
[image: image1.emf]To guide you through your

training while you are on the

course.

Contains unit objectives,

exercises and space to

write notes.

In-course

handbook

1

12 months

access to Microsoft

trainers

3

Available through online

support forum.

Need help? Our team of

Microsoft qualified trainers

are on hand to offer advice

and support.

Your delegate account

gives you access to:

• Reference material

• Course exercise files

• Advice & support forum

• Rewards programme

• Promotions & Newsletters

Delegate

account

4

Hints and tips available

online from our Microsoft

qualified trainers for:

• All MS Office applications

• VBA

• MS Project

• MS Visio

+ more

Trainer hints

and tips

5

Save on further training

courses you book with

Promotions.

• 30% off list price

(time limited)

• £50 off list price

(blue card discount)

Save with

Promotions

6

Reference

material

Available online through

your delegate account.

Comprehensive reference

material with 100+ pages,

containing step-by-step

instructions.

2

[image: image16.png]V¥BAProject (PERSONAL.XLS) 4
= & VBAProject (Quarkerly Sales 7
3 Modulel
43 ObjectVariables
A Recordediacros
Sheetl (Quarterly Sees)

Sheet2 (Q1)
Sheet3 (Q2)
Sheetd (Q3)
Sheets (Q1) =
« >

e [X]
[Modulel Madule — |

[—

F Mytientiodue

[image: image17.png]=olx|

= =] [errstionsy

|

Option Explicit

Sub Hain()

Weleame

AreaofShape = hrea(20, 45)
End sub

Sub Welcome ()

End sub

HsgBox "Hello User, How are you”

Function lrea(Length ks Integer,
drea = Length * Wideh
End Function

o

Width ks Integer)

e Integer

.

[image: image18.png]R m ta e bt G G o e e
B3 hEA o, u ik NEER D wman
e — |

Temer T

corded 08/06/2006 by Relly

e1y satesn) select
Secol uorkbeokTae Shas

]

o

[image: image19.png]r0soft Visual Bas
Edt

& b

Vew Insert

=] -
5 & vBAProject (Quarterly Sale:

Sheets (04)
48] Thsworkbook
55 Modues
3 ObjectVariables
A Recordedilacros

[Sheet1 workshest |

e —

IDsplayPagereak False
JoisplayRightToLf False:
[EnableAutoriter False

|

Format

Quarterly Sales 2006.xls - [RecordedMacros (Code]]

CH| b BRRA o o~

Debug

[=[ofx]

Bun Toos Addbins Window Help

»on m MEFER O

onerar

= Jorowcnart

sub DrawChart ()

DrawChart Macro
Macro recorded 08/06/2006 by Kel

Sheets ("Quarterly sales").sele
Activewindow.ScrollWorkbookTab
Sheets ("Quarterly sales").sele
Activewindow.SmallScroll Down:
ActiveWwindow.ScrollWorkbookTab
Sheets ("Quarterly sales").sele
Range ("C9:C15,HS:HI5") .Select J
Range ("H9") .Activate

Charts.Add
ActiveChart.ChartType = x1Colu

ActiveChart.SetSourceData Soury
>|‘|

[image: image20.png]Help.

DJE'“%Q&

et | armercsd] o |

Vil B Longsge Refnce
Vil B Adginode
et Foms Relsarce

Project Explorer
Seotio oo

oa o

8 project document1)
5 5 Mot e s

5 G Reterences

T R — |

Dispaye s hirarchica st of the projects and o ofthe
s Sntand i and reforenced by asch of he rojecs.

Window Elements

B v cose

15 the Code vindow 50 you can writs and e code
ad it the Seectad 1am.

[image: image21.png]Type a question for help

[image: image22.png]Insert | Format Debuc

“ procedure,

UserForm

& Coss e

Fie.

[image: image23.png]Insert | Format Debu

UserForm

Modie

& Class Mode

Fie.

[image: image24.png]© P
€ prsse

I Bl vais s s

[image: image25.png]nsgbox |
MsgBox(Prompt, [Butions As VbMsgBoxStyle = vhOKONh, [Tiiel, [HeipFiel, [Context) As ViMsgBoxResult

[image: image26.png]Sub Welcome ()
HsgBox "Hello User, How are you”
End Sub

[image: image27.png]Tools | AddIns Window Help
B References.

Macros

VBAProject Propertis.

DigialSignature.

E&OE

Best Training reserves the right to revise this publication and make changes from time to time in its content without notice.

Your Best STL Learning Tools

Welcome to your Best STL training course.

As part of your training, we provide you with the following tools and resources to support and enhance your learning experience.

Thank you for choosing Best STL.

[image: image28.png]T
o | eatorFomt | Gl ok |
oo atngs
¥ ko Syt hoc s pims.

1 e vab i) .
¥ futo st Menbers. T wan:

¥ ko kit
R ato0saTes

Wecow satrgs

¥ g ndre Tet ety
¥ ol todeow
[

[image: image67.png]Learning &
Performance Institute
‘Accredited Learning Provider

Contents
1Unit 1 Recording Macros

1Recording and Running Macros

4Using the Visual Basic Toolbar (2003 Only)

5Adding a Macro/Procedure to the Quick Access Toolbar

5(2007/2010/2013 Only)

6The Personal Macro Workbook

7Unit 2 Working with the Visual Basic Editor

7Introducing Visual Basic for Applications

9Editing Macros in Visual Basic Editor

10Understanding the Development Environment

11Protect/Lock Excel VBA Code

12Using Help

12Closing the Visual Basic Editor

13Unit 3 Developing with Procedures

13Understanding and Creating Modules

14Defining Procedures

14Naming Procedures

15Creating a Sub-Procedure

18Working Using the Code Editor

21Unit 4 Managing Program Execution

21Defining Control-Of-Flow structures

21Using Boolean Expressions

23Using the If...End If Decision Structures

25Using the Select Case...End Select Structure

27Using the Do...Loop Structure

28Using The For...Next Structure

28Using the For Each...Next Structure

29Guidelines for Use Of Control-Of-Flow Structures

30Unit 5 Debugging the Code

30Understanding Errors

32Using Debugging Tools

33Identifying the Value of Expressions

33Setting Breakpoints

34How to Step Through Code

35Working with Break Mode during Run Mode

36Using the Immediate Window

37Unit 6 Understanding Objects

37Defining Objects

38Examining the Excel Object Hierarchy

40Defining Collections

41Using the Object Browser

43Working with Properties

43The With Statement

44Working With Methods

45Event Procedures

46Excel VBA – Quick Reference Guide

Unit 1 Recording Macros
Recording and Running Macros

A macro is a series of commands in Visual Basic, also known as a Sub Procedure. Macros allow you to automate tedious or complicated tasks, particularly those that are prone to error.

You can record a sequence of commands and replay the actions by running the macro. Examining the code of a recorded macro can give you insight into how Visual Basic works.

Macros can be stored on the current worksheet or made available globally by saving them in the Personal.xlsm workbook. This is a hidden workbook that automatically opens when you open Excel.

Recording a Macro

2003:

Tools Menu > Macros > Record Macro

2007/2010/2013
View Ribbon > Macro Section > Macro > Record Macro

Note: 2007/2010/2013 will require the Developer Ribbon to be available for most VBA related tasks.

2007:
Office Button > Options > Display > Tick Show Developer

2010/2013:
File Ribbon > Options > Customise Ribbon > Tick Show Developer

The Record Macro dialog box appears.

	[image: image2.png]Record Macro

Macro name:

Shortautkey:
[

Store macron:

	· Type the macro’s name in the Macro name box (cannot contain spaces)

· Select where the macro is to be stored

· Add a shortcut key, if desired

· Type a description, if desired (this will appear in the VB editor as commented code)

· Click OK.

Perform the actions to be recorded.

To end the recording in 2003:
	[image: image29.png]General Protection

Lock project

I™ Lock project for viewing

Password to view project properties

password
Confirm password

o sl |

	· [image: image30.jpg]

Click the Stop Recording button.

	To end recording in 2007/2010/2013

	[image: image3.png]=ty it
9 °C

	· Click Stop button in bottom left of Status bar

· Or from the Developer ribbon

Running a Macro

A macro can be run by using a keystroke combination, a menu, a toolbar or the Macro dialog box. This provides a list of all available macros in the open workbooks. To open this:

2003:
· Open the Tools menu

· Select Macro

· Choose Macros.
2007/2010/2013
· Developer Ribbon > Code Section > Macros Button

The Macro dialog box appears.

	[image: image4.png]

	· Select the desired macro from the Macro Name list

· Click Run.

Macros without a workbook name in front indicate that they belong to the active workbook.

Click the Step Into button in the Macro dialog box to run the macro one line at a time. Once the VB editor displays, press F8.

Keep pressing F8 to step through the code. Display both the Excel and VB Editor windows in order to see the results of the code execution.
Adding a Macro/Procedure to a Custom Toolbar (2003 Only)

Macros and Sub Procedures can be executed from the Macro dialog box and from within other procedures. You can also execute procedures from toolbars and menus.

To assign a procedure to a custom toolbar:

· Open Tools menu
OR

· Right–click in the toolbars area

· Select Customize.

The Toolbars dialog box appears.

	[image: image31.png]SAEESTT
) STL

	· Click the Toolbars tab

· Click New
· Name the new toolbar

· Click OK.

A new toolbar appears ready for buttons to be added. To do this:

	[image: image32.jpg]Microsoft

	· Click the Commands tab

· Select Macros from the Categories list.

· Drag the custom Button icon onto the new toolbar

· Click Modify Selection
· Click Assign Macro
· Select the required macro and click OK
· Click Close.

Using the Visual Basic Toolbar (2003 Only)
As an alternative to this you can use the Visual Basic Toolbar to record and manage macros. To do this:

	[image: image33.jpg]

	· Open the View Menu
· Select Toolbars
· Choose Visual Basic.

The Visual basic toolbar appears.

[image: image34.jpg]L3

The most used buttons are described below:

	[image: image35.jpg]J

	Run a Macro. A list of available macros appears

	[image: image36.png]Microsoft Excel Objects

HHStyles (Style)]

-{CommandBars (CommandBar)

[Borders (Border)]

HerrorCheckingOptions

[Application
L oritbosics Gwarboss] [din aadiny]
[HWorksheets (Worksheet) | Hanswer]
-{charts (charty I3 HAutoCorrect]
HocumentProperties (DocumentProperty)| -{Assistant]
H¥bproject] HRutoRecover]
-{Custom¥iews (Customview) | HeeliFormat]
-{CommandBars (Commandgar) | Heornddins (comaddimy]
HrTrproseet] Hbebug]
{PivotCaches Pivotcache) | Hbialogs (Dialog)]

]

]

]

]

]

fFont] Hianguagesettings
fterior] | {Rames (Namey
{¥indows (Windowy] | {W¥indows (windowy
Uianes raney] Uianes raney]

{HNames (Name)]

 iorisheetrunction

Houtngsi]

HRecentfiles (Recentrile)

{HPublishObjects (PublishObject) |

HEmartTagRecognizers

HSmartTagoptions]

U martTagrecagnizer

L eboptions] -Gpeech]
regend
[
et ot
P Clck arton to expand chart

=

fwatch]

[[RTDUpdateEvent

	Record a Macro. The Record Macro toolbar appears

	[image: image37.png]

	Opens the Security dialog box allowing the user to set security levels.

	[image: image38.png]

	Open the Visual Basic Editor.

	[image: image39.png]

	Open the Control Toolbox to access a variety of Form Controls

	[image: image40.png]

	Switch design mode On and Off

Adding a Macro/Procedure to the Quick Access Toolbar
 (2007/2010/2013 Only)

To add the recorded Macro as a button on the Quick Access Toolbar, top left of the Excel window follow these steps:

[image: image41.png]

Quick Access Toolbar

[image: image5.png]X H9-®-Ql+

% cut

· Select the small drop menu button (shown above)

· [image: image42.png]

From the menu select “More Commands”

· This will display the Excel Options dialog

[image: image43.png]

· Click menu called “Choose Commands From”

· Select Macros

[image: image44.png]< obiectmrowser ___aTE]

[Classes Members of ‘Worksheet'

& WebOptions Al|# calculate

& Window

& Windows

& Workbook “® ChartObjects

£ workiooks —i|-s Checkspeling

@iiorkanset 3 |'s cirdleimialia

@ WorksheetFunclion [CircularReference

&) Workshests “ ClearAmows

@ Xpplicationinfermat »{|-® ClearCircles =

Propery Cells A5 Range E|
veaconly

Wanbar ot Excel Workshoet 5l

[image: image45.png]

[image: image46.png]

[image: image6.png]e

e

-
PrE—

poe

Trust Center

Choose commands from:().

@ Customize the Quick Access Toolbar.

‘Customize Quick Access Toolbar:()

Macros.

For all documents (defaul]

<separator>
ANOVAL
ANOVAL?
ANovAz
ANOVAZ?
ANOvAS
ANOVAS?
DESCR
DESCR?
ExPON
EXPON?

FESTV
FESTV?
HISTOGRAM
HISTOGRAM?

oG G e oG B B e e o G G

Macro?
Macros
MCORREL
MCORREL?
MCOVAR
MCOVAR?

P o3

‘Show Quick Access Toolbar below the.
Ribbon

FIED

) Undo
™ Redo
-

Print Preview and Print

[SS——
Er=all

ok

The Personal Macro Workbook

The personal macro workbook is automatically created by Excel the first time you record a macro into it. It is then stored in a trusted location as part of your personal profile. It is loaded when Excel is running, therefore macros stored here are always available.
When to create Personal Macros

How do you decide whether to store macros in the Personal Macros workbook or a particular workbook?

Macros which could be used in any workbook would be better saved into the Personal Workbook. For example a macro to create a page setup with a particular header and footer could then be run for any workbook. Another example might be a macro to change the selected text to upper or proper case.

Saving the Personal Macros

When exiting from Excel you will be given an opportunity to save the Personal Macro Workbook.

[image: image47.png]Gption Explicit

Private sub Worksheet_Activa

End sub

This will makes it available every time you use Excel. The workbook file is named Personal.xls (up to Excel 2003) or Personal.xlsb (Excel 2007 and newer).
Editing a Personal Macro

Personal macros are stored within a hidden workbook which makes them a little harder to edit. The easiest way without unhiding the workbook is to switch to the Visual Basic Editor (VBE) by pressing Alt+F11.

Assigning Personal Macros to the Toolbar
Once created it would be convenient to assign Personal macros to Toolbar icons (Excel 2003) or to buttons on the Quick Access Toolbar.

Unit 2 Working with the Visual Basic Editor
Introducing Visual Basic for Applications

Visual Basic for Applications or VBA is a development environment built into the Microsoft Office(Suite of products.

VBA is an Object Oriented Programming (OOP) language. It works by manipulating objects. In Microsoft(Office(the programs are objects. In Excel worksheets, charts and dialog boxes are also objects.
In VBA the object is written first
I’m fixing the Yellow House = .House.Yellow.Fix

House
Yellow
Fix
English
.noun
.adjective
.verb

VBA
.object
.property
.method

When working in VBA tell Excel exactly what to do. Don’t assume anything.
Some General tips
Do not hesitate to use the macro recorder to avoid typos in your code. It will also allow you to get access to useful code without having to memorise it.
Write your code in lower case letters. If the spelling is RIGHT, the Visual Basic Editor will capitalize the necessary letters. If it doesn't.... check your spelling.

All VBA sentences must be on a single line. When you need to write long sentences of code and you want to force a line break to make it easier to read you must add a space and an underscore at the end of each line and then press Return. Here is an example of a single sentence broken into 3 lines:

Range("A1:E9").Sort Key:=Range("C2"), Order1:=xlAscending, _
MatchCase:=False, Orientation:=xlTopToBottom, _
DataOption1:=xlSortTextAsNumbers

Flickering Screen

Running a macro or VBA code may cause the screen to flicker as the monitor is the slowest part of the program and cannot keep up with the very fast changes taking place. To switch off the screen until the program is run enter the following code line:
Application.ScreenUpdating = False
Screen comes on automatically on completion of the program.
CutCopyMode
After each Paste operation, you should turn off copying:

ActiveSheet.Paste
Application.CutCopyMode = False

DisplayAlerts
If you don't want Excel to ask you things like "Do you want to delete this file..." you can use the following line of code at the beginning of the relevant VBA procedure.
Application.DisplayAlerts = False
Then at the end make sure you use the following code to reactivate Display Alerts.
Application.DisplayAlerts = True
Compare Text
If you try to compare two strings in VBA the system compares the Binary information of the strings so that
 “My Name” Is Not Equal To “my name”.
To make the computer compare the words in the string, rather than the Binary you need to enter the code:

Option Compare Text

In the Declarations area of the module.
Quit
The following line of code closes Excel altogether.
Application.Quit
Editing Macros in Visual Basic Editor
When you record a macro, the recorded instructions are inserted into a Procedure whose beginning and end are denoted with the key words Sub and End Sub. This is stored within a Module. A module can contain many procedures.
Code generated when a macro is recorded can be modified to provide a more customised function. To do this:
2003 Version
· Open the Tools menu

· Select Macro , Choose Macros
· Select the desired macro from the Macro Name list

· Click Edit.

2007/2010/2013 Version

· Developer Ribbon > Code Section > Macros

· Select the desired macro from the Macro Name list
· Click Edit

The Visual Basic Editor appears.
[image: image48.png]Loop in Columns.xls - Module1 (Code)

J8 = 3

[(Generan =] ffooping_otumns

Sub looping_columns ()

o Lioat o oereemiphat s = False

D soantar 1 Tateger
Romae) Sercet

ror comear < 1 e o

7o s aecavecer =

12 hevivetert s 25 Taen

celmerimnorant 5ot = Tee

SR ieerion.ront cotosTnten =

g

Olceivece i omcsecin, 0 seecd
=

Romge (702 Select

e Tescan ortaer (1, o) .setece

Ramge (#£27} Seract

e Dot ortmer (1, o) setece

et ot

End sub

i}

· Make the desired changes
· Save the macro

· Close the Visual Basic Editor window.
Important Note
You can usually figure out how to code any action in Excel by recording it in a macro and viewing the resulting macro code.
Understanding the Development Environment
[image: image49.png]

	Title bar, Menu bar and Standard toolbar
	The centre of the Visual basic environment. The menu bar and toolbar can be hidden of customized. Closing this window closes the program.

	Project Explorer
	Provides an organized view of the files and components belonging to the project.
If hidden the Project Explorer can be displayed by pressing Ctrl + R

	Properties Window
	Provides a way to change attributes of forms and controls (e.g. name, colour, etc). If hidden press F4 to display.

	Code Window
	Used to edit the Visual basic code. Press F7 and it will open an object selected in Project Explorer. Close the window with the Close button that appears on the menu bar.

Protect/Lock Excel VBA Code

When we write VBA code it is often desirable to have the VBA Macro code not visible to end-users. This is to protect your intellectual property and/or stop users messing about with your code.

To protect your code, from within the Visual Basic Editor

	[image: image50.png]Microsoft Visual Basic

Runtime error '

Subscript out of range.

ed | [CBEg] Help

	· Open the Tools Menu
· Select VBA Project Properties
The Project Properties dialog box appears.

· Click the Protection page tab
· Check "Lock project for viewing"

· Enter your password and again to confirm it.
· Click OK

After doing this you must Save and Close the Workbook for the protection to take effect.

The safest password to use is one that uses a combination of upper, lower case text and numbers. Be sure not to forget it.
[image: image51.png]Microsoft Visual Basic

Code exection has been interrupted

T =

Notes

	

	

	

	

	

	

	

Using Help

If the Visual Basic Help files are installed, by pressing F1, a help screen displays explaining the feature that is currently active:
[image: image52.png]

Alternatively use the Ask a Question box on the menu bar to as a quick way to find help on a topic.
[image: image53.png]

Closing the Visual Basic Editor

To close the Visual Basic Editor use one of the following:

	[image: image7.png]File | Edt View Insert Format Debug Rur

&l save Quarterly Sales 2006.xis Crl+s.
Inport Fie ulenn
Export Fie culee

Remove Myientiodue

& print. i+

Gose and Return to Microsoft Excel_AEHQ

	· Open the File menu; select Close and Return to Microsoft Excel
OR
· Press Alt + Q
OR
· Click [image: image8.png]

 Close in the title bar.

Unit 3 Developing with Procedures

Procedure is a term that refers to a unit of code created to perform a specific task. In Excel, procedures are stored in objects called Modules.

In this unit we will look at both Modules and Procedures.

Understanding and Creating Modules
Standard modules can be used to store procedures that are available to all forms, worksheets and other modules. These procedures are usually generic and can be called by another procedure while the workbook is open.
Within a project you can create as many standard modules as required. You should store related procedures together within the same module.

Standard modules are also used to declare global variables and constants. To create a standard module in the VB Editor:

	[image: image54.png]ol Data Window Help
-S4 L
B 9%

Page Break Preview

Task Pane.
Toobars 3 Standard
Eormula Bar Formatting
Status Bar Borders
Header and Footer. chart

@ Comments Control Tobax
Custom views. Text To speech

B s

Zoom, watch Window

	· Open the Insert menu
· Select Module.

A new Module appears:

[image: image9]
· Display the Properties window if necessary

· In the Properties window change the name of the module
Defining Procedures
A procedure is a named set of instructions that does something within the application.

To execute the code in a procedure you refer to it by name from within another procedure. This is known as Calling a procedure. When a procedure has finished executing it returns control to the procedure from which it was called.

There are two general types of procedures:

	Sub procedures
	perform a task and return control to the calling procedure

	Function procedures
	perform a task and return a value, as well as control, to the calling procedure

If you require 10 stages to solve a problem write 10 sub procedures. It is easier to find errors in smaller procedures than in a large one.

The procedures can then be called, in order, from another procedure.
Naming Procedures
There are rules and conventions that must be followed when naming procedures in Visual Basic.

While rules must be followed or an error will result, conventions are there as a guideline to make your code easier to follow and understand.

The following rules must be adhered to when naming procedures:
	· Maximum length of the name is 255 characters

· The first character must be a letter

· Must be unique within a given module

· Cannot contain spaces or any of these characters: . , @ & $ # () !

You should consider these naming conventions when naming procedures:
	· As procedures carry out actions, begin names with a verb

· Use the proper case for the word within the procedure name

· If procedures are related try and place the words that vary at the end of the name

Following these conventions, here is an example of procedure names:

PrintClientList

GetDateStart

GetDateFinish

Creating a Sub-Procedure
Most Excel tasks can be automated by creating procedures. This can be done by either recording a macro or entering the code directly into the VB Editor’s Code window.
Sub procedures have the following syntax:

	[Public/Private] Sub ProcedureName ([argument list])
Statement block

End Sub

Public indicates procedure can be called from within other modules. It is the default setting
Private indicates the procedure is only available to other procedures in the same module.

The Sub…End Sub structure can be typed directly into the code window or inserted using the Add Procedure dialog box.

To create a sub procedure:

· Create or display the module to contain the new sub procedure
· Click in the Code window

· Type in the Sub procedure using the relevant syntax
Type in the word Sub, followed by a space and the Procedure name

Press Enter and VB inserts the parenthesis after the name and the End Sub line.
OR
Use Add Procedure.

· To display the Add Procedure dialog box:
	[image: image55.png]) o sy IR M 0

	· Open the Insert menu

· Select Procedure.

The Add Procedure dialog box appears:
	[image: image56.png]Security.

	· Type the name of the procedure in the Name text box

· Select Sub under Type, if necessary
· Make the desired selection under Scope
· Click OK.

Below is an example of a basic sub procedure:
[image: image57.png]

[image: image58.png]

Notes

	

	

	

	

	

	

	

Auto Quick Info is a feature of the Visual Basic that displays a syntax box when you type a procedure or function name.
The example below shows the tip for the Message Box function:[image: image59.png]

Arguments in square brackets are optional.
Values passed to procedures are sometimes referred to as parameters.

[image: image60.png]

Notes

	

	

	

Working Using the Code Editor
The Code editor window is used to edit Visual Basic code. The two drop down lists can be used to display different procedures within a standard module or objects’ event procedures within a class module.
Below is an illustration of the code window:

[image: image10]
	Object List

	Displays a list of objects contained in the current module.

	Procedure List
	Displays a list of general procedures in the current module when General is selected in the Object list.

When an object is selected in the Object list it displays a list of events associated with the object.

[image: image61.png]

Notes

	

	

	

Setting Code Editor Options
The settings for the Code Editor can be changed. To do this:
	[image: image62.png]Tookars

Tookars:

[Formatting
I 3D Settings

I o Toobar nane

I Fo fiay New Toobar]

2|

Connands | gptors |

==

	· Open the Tools menu in the VB Editor
· Select Options.

[image: image63.png]o | o |

To add a command to a toobar: select a categary and chag the
command out of this dislog bosx to a toobar.

Categoris: Commangs:
[indow and ey & Custom Menu Ttem =
© custom Button

Selected command;

vesrgtion | iy s

=

The Options dialog box appears:
The following are explanations of the Code Setting selections:
	Auto Syntax Check
	Automatically displays a Help message when a syntax error is detected. Message appears when you move off the code line containing the error

	Require Variable Declaration
	Adds the line Option Explicit to all newly created modules, requiring all variables to be explicitly declared before they are used in a statement.

	Auto List Members
	Displays a list box under your insertion point after you type an identifiable object. The list shows all members of the object class. An item selected from the list can be inserted into your code by pressing the Tab key

	Auto Quick Info
	Displays a syntax box showing a list of arguments when a method, procedure or function name is typed

	Auto Data Tips
	Displays the value of a variable when you point to it with a mouse during break mode. Useful for debugging.

	Auto Indent
	Indent the specified amount when Tab is pressed and indents all subsequent lines at the same level.

The Windows Settings selections are explained below:
	Drag-and-Drop Text Editing
	Allows you to drag and drop code around the Code window and into other windows like the Immediate window.

	Default to Full Module View
	Displays all module procedures in one list with optional separator lines between each procedure. The alternative is to show one procedure at a time, as selected through the Procedure list.

	Procedure Separator
	Displays a grey separator line between procedures if Module view is selected

Editing Guidelines

Below are some useful guidelines to follow when editing code:

· If a statement is too long carry it over to the next line by typing a space and underscore (_) character at the end of the line. This also works for comments.

Strings that are continued require a closing quote, an ampersand (&), and a space before the underscore. This is called Command Line Continuation.
· Indent text within control structures for readability. To do this:

· Select one or more lines

· Press the Tab key

OR
· Press Shift + Tab to remove the indent.

· Complete statements by pressing Enter or by moving focus off the code line by clicking somewhere else with the mouse or pressing an arrow key.

When focus is moved off the code line, the code formatter automatically places key words in the proper case, adjusts spacing, adds punctuation and standardizes variable capitalization.

It is also a good idea to comment your code to document what is happening in your project. Good practice is to comment what is not obvious.

Start the line with an apostrophe (‘) or by typing the key word Rem (for remark). When using an apostrophe to create a comment, you can place the comment at the end of a line containing a code statement without causing a syntax error.
[image: image64.png]X9~ -2
rie|

Macro Exercises:xism - Microsoft Excel

Home | If CustomizeQuickAccessToolbar | Data Review View Developer Acrobat
New 2, = osum -
;;“‘W . open N Siwrap Text General - E i H o= ;]:::S ﬂ)
" pomatpama V] seve . Meseacenter~ | B9 % | e sy T Qe ft e
Ciipboard E-mail 5 Alignment 6 tumber 5 stles | celts Editing |
B4 Quide print e g
A) oeeeewanarn 5 =T G = 7 5 = T = = 5 = 5 = =
1 EmployeelD Emy Spelling. Current Salary Grade 1
2 JOENHB Joh undo £22,000.008
3 DEENYB Debi(V] Redo £23,000008
"4 |saerec [sam| sorascending ood £18,000.00 C
5 |ROWEEA Rog: Sort Descending ley £32,000.00 A
6 ROEASA ROBE Open RecentFile £28,000.00 A
7 EvBRLE Em More Commands. ood £24,000.00 B
5 DOBRDB Doni - ood £24,000.00 B
o UEeAtB er Show Below the Ribbon 000008
10 DAWEMC DavidBeckham 11/03/1981 Wembley £18,000.00 C
11 JOWEDA John Steed 05/12/1977 Wembley £35,000.00 A
12 SABREC Sam Cooke 24/03/1956 Brentwood £18,000.00 C
13 ROWEEA RogerMoore 17/07/1954 Wembley £32,000.00 A
14 ROEASA Robbie Williams 07/02/1964 Ealing £28,000.00 A
15 EVBRLE Emma Peel 03/04/1968 Brentwood £24,000.00 B
16 DOBRDB Donny Osmond 05/05/1967 Brentwood £24,000.00 B
17 JEEAER Jermain Defoe 12/08/1974 Ealing. £22,000.00 B
18 DAWEMC DavidBeckham 11/03/1981 Wembley £18,000.00 C
19 Total £241,00000 £0.00
20|
2
2|
2
2% L
25|
2

b [Sheet19 | Sheet18 /‘Sheetl7 . Sheetl6 Sheeti5 (Sheetl4 . Sheetl

Sheet? “Sheet3 3

[l

)

of bxc.. | Brcel VBA It

Notes

	

	

	

Unit 4 Managing Program Execution

Defining Control-Of-Flow structures

When a procedure runs, the code executes from top to bottom in the order that it appears. Only the simplest of programs execute in this manner. Most programs incorporate logic to control which lines of code to execute.

The Control-Of-Flow structures described below provide this logic:
	Sequential
	Each line of code is executed in order from top to bottom.

	Unconditional Branching
	A statement that directs the flow of program execution to another location in the program without condition. Calling a Function, a Sub or using the GoTo statement are examples of unconditional branching

	Conditional Branching
	The code to be executed is based on the outcome of a Boolean expression. Decision structures like If and Select Case are used to implement conditional branching.

	Looping
	A block of code executed repeatedly as long as a certain condition exists. The For…Next and the Do..Loop are examples of looping structures

	Halt Statements
	Commands used to stop code execution. The Stop command stops execution but retains variables in memory. The End command terminates the application.

Using Boolean Expressions

A Boolean expression returns a True or False value. Many Boolean expressions take the form of two expressions either side of a comparison operator. If the result is true the condition is met and control is passed to the code to be executed.

Here are some examples of Boolean expressions:
	Firstname = “Alan”

UnitPrice > 1.60

OrderAmount < 500

The following comparison operators are used in Boolean expressions:
	<
	Less than

	<=
	Less than or equal to

	>
	Greater than

	>=
	Greater than or equal to

	=
	Equal to

	<>
	Not equal to

	Is
	Compares object variables

	Like
	Compares string expressions

When testing for more than one condition Boolean expressions can be joined with a Logical Operator.
The following is a list of Logical Operators:

	And
	Each expression must be True for the condition to be true.

	Or
	One of the expressions must be True for the condition to be true.

	Not
	The expression must be False for the condition to be true.

The following are examples of multiple conditions joined by logical operator:
	UnitPrice > 1.60 AND OrderAmount > 1000

DateJoined <= 2004 OR DeptName = “Sales”

A null expression will be treated as a false expression.
[image: image65.png]view | Insert Format Debug
B code F7
Defintion ShiftF2

LostPosiion_ CulbShit+#2
%5 Object Browser F2
I inmedate vindon_cuiea
[Locels Window
B wetch Window

:

Notes

	

	

	

	

Using the If...End If Decision Structures
If…End If is used to execute one or more statements depending upon a text condition. There are four forms of the If construct.
The first contains the condition and statement to be executed in the same line:

	If <condition> Then <statement>

If OrderAmount >1000 Then Discount = “Yes”

The block form is used when several statements are to be executed based on result of the test condition:

	If <condition> Then

<statement block>

End If

If Country = “England” Then

Account = “Domestic”
TransportCost = 10.00

End If

Like the If…Then structure the If…Then…Else structure passes control to the statement block that follows the Then keyword when the condition is True and passes control to the statement block that follows the Else keyword when the condition is False.
	If <condition> Then

<statement block>

Else

<statement block>

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

Else

Account = “Foreign”

TransportCost = 40.00

End If

By modifying the basic structure and inserting ElseIf statements, an If…Then…Else block that tests multiple conditions is created. The conditions are tested in the order of appearance until a condition is true.
If a true condition is found, the statement block following the condition is performed; execution then continues with the first line of code following the End If statement. If no condition is true, execution will continue with the End If statement. An optional Else clause at the end of the block will catch the cases that do not meet any of the conditions.

	If <condition_1> Then

<statementBlock1>

[ElseIf <condition_2> Then

[<StatementBlock2>]]

[ElseIf <condition_3> Then

[<StatementBlock3>]]

[ElseIf <condition_N> Then

[<StatementBlockN>]]

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

ElseIf Country = “Wales” Then

Account = “Domestic”

TransportCost = 20.00

ElseIf Country = “Scotland” Then

Account = “Domestic”

TransportCost = 25.00

ElseIf Country = “Northern Ireland” Then

Account = “Domestic”

TransportCost = 30.00

Else

Account = “Foreign”

TransportCost = 40.00

End If

Using the Select Case...End Select Structure
The Select Case statement is often used in place of the complex If statement. The advantage of using this style is that your code will be more readable and efficient. The downside is that it is only useful if compared against just one value.
The Select Case structure contains the test expression in the first line of the block. Each Case statement in the structure then compares against the test expression.

The syntax of the Select Case structure, followed by two examples is shown below:

[image: image66.png]A,

Notes

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	Select Case <TestExpression>

Case <Expression_1>

<StatementBlock1>

Case <Expression_2>

<StatementBlock2>

Case <Expression_3>

<StatementBlock3>

Case <Expression_N>

<StatementBlockN>

End Select
Select Case Country

Case “England”
Account = “Domestic”

TransportCost = 10.00

Case “Wales”

Account = “Domestic”

TransportCost = 20.00

Case “Scotland”

Account = “Domestic”

TransportCost = 25.00

Case “Northern Ireland”

Account = “Domestic”

TransportCost = 30.00

Case Else
Account = “Foreign”

TransportCost = 40.00

End Select
Select Case TestScore

Case 0 To 50

Result = “Below Average”

Case 51 To 70

Result = “Good”

Case Is > 70

Result = “Excellent”
Case Else

Result = “Irregular Test Score”

End Select

Using the Do...Loop Structure
The Do…Loop structure controls the repetitive execution of the code based upon a test of a condition. There are two variations of the structure: Do While and Do Until.

The Do While structure executes the code as long as the condition is true.

The Do Until structure executes the code up to the point where the condition becomes true or as long as the condition is false. The condition is any expression that can be evaluated to true or false.

The Exit Do is optional and can be used to quit the Do statement and resume execution with the statement following the Loop. Multiple Exit Do statements can be placed anywhere within the Loop construct.

The following syntax is used to perform the statement block zero or more times:

	Do While <condition>

<statement block>

[Exit Do]

Loop

Do Until <condition>

<statement block>

[Exit Do]

Loop

Do While ActiveCell.Value <> “”

ActiveCell.Value = ActiveCell.Value *1.25

ActiveCell.Offset(1).Select

Loop

To perform the statement block at least once, use one of the following:

	Do

<statement block>

[Exit Do]

Loop While <condition>

Do

<statement block>

[Exit Do]

Loop Until <condition>

Do
Count = Count +1
Loop Until Count = NoStudents

Using The For...Next Structure
The For…Next structure executes a block of statements a specific number of times using a counter that increases or decreases values. Beginning with the start value, the counter is increased or decreased by the increment. The default increment is 1. Specify an increment of -1 to count backwards.

The Exit For statement is optional and can be used to quit the For construct and resume execution with the statement following the Next.

Below is the syntax of the For…Next statement:

	For <counter> = <start> To <end> [Step <increment>
<statement block>

[Exit For]

Next [<counter>]
Dim MyIndex as Integer

For MyIndex = 1 To NoRows
Cells (MyIndex,4).Select
Total = Total + Cells (NoRows,4).Value

Next MyIndex

Using the For Each...Next Structure
The For Each…Next structure is used primarily to loop through a collection of objects. With each loop it stores a reference to a given object within the collection to a variable. The variable can be used by the code to access the object’s properties. By default it will loop through ALL the objects in a collection.

The Exit For statement is optional and can be used to quit the For Each construct and resume execution with the statement following the Next.

Below is the syntax of the For Each…Next statement:
	For Each <element> in <CollectionReference>

<statement block>

[Exit For]

Next [<element>]

Dim BookVar As Workbook

For Each BookVar In Application.Workbooks

BookVar.Save

Next BookVar

Guidelines for Use Of Control-Of-Flow Structures
Use the following as a guide in choosing the appropriate Decision structure:

	Use
	To

	If…Then Or If…Then…End If
	Execute one statement based on the result of one condition

	If…Then…End If
	Execute a block of statements based on the result of one condition

	If…Then…Else…End If
	Execute 1 of 2 statement blocks based on the result of one condition

	Select Case…End Select
	Execute 1 of 2 or more statement blocks based on 2 or more conditions, with all conditions evaluated against 1 expression.

	If…Then…ElseIf…End If
	Evaluate 1 of 2 or more statement blocks based on 2 or more conditions, with conditions evaluated against 2 or more expressions.

Use the following as a guide in choosing the appropriate Looping structure:

	Use
	To

	For…Next
	Repeat a statement block a specific number of times. The number is known or calculated at the beginning of the loop and doesn’t change.

	For…Each

	Repeat a statement block for each element in a collection or array.

	For…Next
	Repeat a statement block while working through a list when the number of list items is known or is calculated beforehand.

	Do…Loop
	Repeat a statement block while working through a list when the number of list items is not known or are likely to change.

	Do…Loop
	Repeat a statement block while a condition is met.

Unit 5 Debugging the Code

Understanding Errors

When developing code, problems will always occur. Wrong use of functions, overflow and division by zero are some of the things that will cause an error and not produce the intended results.

Errors are called Bugs. The process of removing bugs is known as Debugging. VBA provides tools to help see how the code is running.

There are three general types of errors:

Syntax Errors

Syntax errors occur when code is entered incorrectly and is typically discovered by the line editor or the compiler.

· Discovered by Line Editor: When you move off a line of code in the Code window, the syntax of the line is checked. If an error is detected the whole line turns red by default indicating the line needs to be changed.

· Discovered by Compiler: While the line editor checks one line at a time, the compiler checks all the lines in each procedure and all declarations within the project. If Option Explicit is set, the compiler also checks that all variables are declared and that all objects have references to the correct methods, properties and events. The compiler also checks that all required statements are present, for example that each If has an End If. When the compiler finds an error it displays a message box describing the error.
Run-Time Errors

When a program is running and it encounters a line of code that it cannot be executed, a run-time error is generated. These errors occur when a certain condition exists. A condition could run fine 10 times but cause an error on the 11th. When a run-time error occurs, execution is halted a message box appears defining the error.

Logic Errors

Logic errors create unexpected outcomes when a procedure is executed. Unlike syntax or run-time errors the application is not halted and you are not shown the offending line of code. These errors are more difficult to locate and correct.

Minimizing Errors

Here are a few suggestions to help you minimize or make it easier to find errors in your code:
· Add comments to code explaining what a line of code or procedure is meant to do. This is important if other people are going to look at the code.

· Create meaningful variable names. Use prefixes to identify data or object type.

· Any time you use division that contains a variable in the denominator, test the denominator to ensure that it doesn’t equal zero

· Force variable declarations with the use of Option Explicit. A simple misspelling of a variable name will lead to a logic error, not a run-time error.

· Give procedures names that clearly describe what they do.

· Keep procedures as short as possible, giving it one or two specific tasks to carry out.

· Test procedures with large data sets representing all possible permutations of reasonable or unreasonable data. Make your procedure fail before someone else does.

Notes

	

	

	

	

	

	

	

	

	

	

	

	

	

Using Debugging Tools

VBA’s debugging tools are useful for checking and understanding the cause of logic and run-time errors in the code.

The toolbar buttons as they appear left to right are explained below:

	Design Mode

	Turns design mode off and on.

	Run / Continue

	Runs code or resumes after a code break

	Break

	Stops the execution of a program while it's running and switches to Break Mode.

	Reset

	Clears the execution stack and module level variables and resets the project.

	Toggle Breakpoint
	Sets or removes a Break Point at the current line.

	Step Into

	Executes code one statement at a time.

	Step Over

	Allows selected ode to be stepped over during execution.

	Step Out

	Executes the remaining lines of a procedure after a break

	Locals Window

	Displays the value of variables and properties during code execution

	Immediate Window
	Displays a window where individual lines of code can be executed and variables evaluated.

	Watch Window

	Displays the value of each expression that is added to a window.

	Quick Watch

	Displays the current value of the selected expression.

	Call Stack

	Displays all the currently loaded procedures

Debugging is done when the application is suspended (in Break Mode). Everything loaded into memory remains in memory and can be evaluated. A program enters Break mode in one of the following ways

· A code statement generates a run-time error

· A breakpoint is intentionally set on a line of code

· A Stop statement is entered within the program code.

Identifying the Value of Expressions

While debugging it is useful to find out the value of variables and expressions while your code is executing.

VBA has the Locals Window, Immediate Window, Watch Window and Quick Watch, described in Using Debugging Tools on the previous page, which can be used to find the values of expressions

Another quick way of finding out the value of variables and expressions is the Auto Data Tip which displays the value of the expression where the mouse is pointing.

Setting Breakpoints

Setting breakpoints allows you to identify the location where you want your program to enter into break mode. The program runs to the line of code and stops. The code window displays and the line of code where the break point is set is highlighted.

When the code is halted, the value of a variable or expression can be checked by holding the mouse pointer over the expression or in the immediate window.

To set a breakpoint open the code window and select the desired procedure:

	
	· Position the insert point on the desired line of code

· Set the breakpoint by clicking Toggle Breakpoint on the Debug toolbar
OR
· Open the Debug menu and select Toggle Breakpoint
OR

· Click in the grey area to the left of the line of code

How to Step Through Code

The step tools allow you to step one line at a time through the code to see exactly which statements in your procedure are being executed.

	Step Into

	F8
	Executes code one statement at a time. If the statement calls another procedure execution steps into the called procedure and continues to execute one step at a time.

	Step Over

	Shift + F8
	Executes code one statement at a time. If the statement calls another procedure the procedure is executed without pausing.

	Step Out

	Ctrl + Shift + F8
	Executes the remaining lines of a procedure without pausing.

	Run To Cursor
	Ctrl + F8
	Runs from the current statement to the location of the cursor in the Code window if you are stepping through code.

	Set next Statement
	Ctrl + F9
	Runs the statement of your choice rather than the next statement.

	Call Stack

	Ctrl + L
	Displays all the currently active procedures in the application that have started but are not completed.

Notes

	

	

	

	

	

	

	

	

Working with Break Mode during Run Mode

During code execution the program can enter into Break Mode either intentionally or because of a run-time error. When a run-time error occurs a message appears that describes the error.

Click the Debug button to display the code window with the offending line highlighted.

If during the program execution you need to intervene, for example it’s stuck in an endless loop, you can do so by pressing Ctrl + Break or the Break button in the Visual Basic Editor. It is also possible to break pressing Esc twice quickly.
That action will suspend the program execution and produce the following message:

Notes

	

	

	

	

	

Using the Immediate Window

The Immediate window is a debugging feature of Visual Basic. It can be used to enter commands and evaluate expressions.

Code stored in a sub or function procedure can be executed by calling the procedure from the Immediate window.

To open the Immediate window:

	
	· Open the View menu
· Select Immediate window
OR

· Press Ctrl+G.

The Immediate window appears.

To execute a sub procedure:

· Type SubProcedureName ([Argument list])

· Press Enter.

To execute a function and print the return value in the window:

· Type ? FunctionName ([Argument list])

· Press Enter.

To evaluate an expression:

· Type ? Expression

· Press Enter.

Within the code, especially in loops, use the Debug.Print statement to display values in the Immediate window while the code is executing. The Immediate window must be open for this.
Notes

	

	

	

Unit 6 Understanding Objects
An object is an element of an application that can be accessed and manipulated using Visual Basic. Examples of objects in Excel are worksheets, charts and ranges.

Defining Objects

Objects are defined by lists of Properties, and Methods. Many also allow for custom sub-procedures to be executed in response to Events.

The term Class refers to the general structure of an object. The class is a template that defines the elements that all objects within that class share.

Properties

Properties are the characteristics of an object. The data values assigned to properties describe a specific instance of an object.

A new workbook in Excel is an instance of a Workbook object, created by you, based on the Workbook class. Properties that define an instance of a Workbook object would include its name, path, password, etc.

Methods
Methods represent procedures that perform actions.

Printing a worksheet, saving a workbook selecting a range are all examples of actions that can be executed using a method.

Events
Many objects can recognize and respond to events. For each event the object recognizes you can write a sub procedure that will execute when the specific event occurs.

A workbook recognizes the Open event. Code inserted into the Open event procedure of the workbook will run whenever the workbook is opened.

Events may be initiated by users, other objects, or code statements. Many objects are designed to respond to multiple events.

Notes

	

	

	

Examining the Excel Object Hierarchy

The Excel Object Module is a set of objects that Excel exposes to the development environment. Many objects are contained within other objects. This indicates a hierarchy or parent-child relationship between the objects.

The Application object represents the application itself. All other objects are below it and accessible through it. It is by referencing these objects, in code, that we are able to control Excel.

Objects, their properties and methods are referred to in code using the “dot” operator as illustrated below:

	Application.ActiveWorkbook.SaveAs “Employees.xls”

Some objects in Excel are considered global. This means they are on top of the hierarchy and can be referenced directly. The Workbook object is a child object of the Excel Application object. But since the Workbook object is global you don’t need to specify the Application object when referring to it.

Therefore the following statements are equal:

	Application.ActiveWorkbook.SaveAs “Employees.xls

ActiveWorkbook.SaveAs “Employees.xls”

Some objects in the Excel Object model represent a Collection of objects. A collection is a set of objects of the same type.

The Workbooks collection in Excel represents a set of all open workbooks. An item in the collection can be referenced using an index number or its name.

To view the entire Excel Object model:

· Open the Help window

· Select the Contents tab

· Expand Programming Information
· Expand Microsoft Excel Visual basic Reference
· Select Microsoft Excel Object Model.

The following illustration shows a portion of the Excel object hierarchy. Most projects will only use a fraction of the available objects.

Defining Collections

A collection is a set of similar objects such as all open workbooks, all worksheets in a workbook or all charts in a workbook.

Many Excel collections have the following properties:

	Application
	Refers to the application that contains the collection

	Count
	An integer value representing the number of items in the collection.

	Item
	Refers to a specific member of the collection identified by name or position. Item is a method rather than a property

	Parent
	Refers to the object containing the collection

Some collections provide methods similar to the following:

	Add
	Allows you to add items to a collection

	Delete
	Allows you to remove an item from the collection by identifying it by name or position.

Referencing Objects in a Collection

A large part of programming is referencing the desired object, and then manipulating the object by changing its properties or using its methods. To reference an object you need to identify the collection in which it’s contained.

The following syntax references an object in a collection by using its position. Since the Item property is the default property of a collection there is no need to include it in the syntax.

	CollectionName(Object Index Number)
Workbooks.Item(1)

Workbooks(1)

Charts(IntCount)

Notes

	

	

	

The following syntax refers to an object by using the object name. Again the Item property is not necessary:

	CollectionName(ObjectName)
Workbooks(“Employees”)

Worksheets(“Purchases By Month”)

Sheets(“Total Sales”)

Charts(“Profits 2006”)

Using the Object Browser

The Object Browser is used to examine the hierarchy and contents of the various classes and modules.

The Object Browser is often the best tool to use when you are searching for information about an object such as:

· Does an object have a certain property, method or event

· What arguments are required by a given method

· Where does an object fit in the hierarchy
To access the Object Browser:

In the Visual Basic Editor, do one of the following:

· Open the View menu

· Select Object Browser

OR

· Press F2

OR
· Click [image: image11.png]

 the Object Browser icon.

Notes

	

	

	

	

	

	

The Object Browser dialog box appears.

The following icons and terms are used in the Object Browser:

	
	Class
	Indicates a Class (Eg Workbook, Worksheet, Range, Cells)

	
	Property
	Is a value representing an attribute of a class (Eg. Name, Value)

	
	Method
	Is a procedure that perform actions (Eg. Copy, Print Out, Delete)

	
	Event
	Indicates an event which the class generates (Eg Click, Activate)

	
	Constant
	Is a variable with a permanent value assigned to it (Eg vbYes)

	
	Enum
	Is a set of constants

	
	Module
	Is a standard module

To search for an object in the Object Bowser:

· Type in the search criteria in the Search Text box

· Click

To close the Search pane:

· Click

Working with Properties

Most objects in Excel have an associated set of properties. During execution, code can read property values and in some cases, change them as well.

The syntax to read an object’s property is as follows:

	ObjectReference.PropertyName

ActiveWorkbook.Name

The syntax to change an object’s property is as follows:

	ObjectReference.PropertyName = expression

ActiveWorkbook.Name = “Quarterly Sales 2006”

The With Statement

The With statement can be used to work with several properties or methods belonging to a single object without having to type the object reference on each line.
The With statement helps optimize the code because too many “dots” in the code slows down execution.

The syntax for the With statement is as follows:

	With ObjectName

<Statement>

End With

With ActiveWorkbook

.PrintOut

.Save

.Close

End With

You can nest With statements if needed.

Make sure that the code does not jump out of the With block before the End With statement executes. This can lead to unexpected results.

Working With Methods

Many Excel objects provide public Sub and Function procedures that are callable from outside the object using references in your VB code. These procedures are called methods, a term that describes actions an object can perform.

Some methods require arguments that must be supplied when using the method.

The syntax to invoke an object method is as follows:

	ObjectReference.method [argument]

Workbooks.Open “Sales 2006”

Range(“A1:B20”).Select

Selection.Clear

When calling procedures or methods that have arguments you have two choices of how to list the argument values to be sent.

Values can be passed by listing them in the same order as the argument list. This is known as a Positional Argument.
Alternatively you can pass values by naming each argument together with the value to pass. This is known as a Named Argument. When using this method it is not necessary to match the argument order or insert commas as placeholders in the list of optional arguments

The syntax for using named arguments is as follows:

	Argumentname:= value

The example shows the PrintOut method and its syntax:

	Sub PrintOut([From],[To],[Copies],[Preview],[ActivePrinter],[PrintToFile],[Collate],

[PrToFilename])

The statements below show both ways of passing values when calling the PrintOut method. The first passes by Position, the second by Naming:

	Workbooks(“Quarterly Sales 2006”).PrintOut (1,2,2, , , ,True)

Workbooks(“Quarterly Sales 2006”).PrintOut From:=1, To:=2, Copies:=2, Collate:=True

Event Procedures

An event procedure is a sub procedure created to run in response to an event associated with an object. For example run a procedure when a workbook opens.

Event procedure names are created automatically. They consist of the object, followed by an underscore and the event name. These names cannot be changed. Event procedures are stored in the class module associated with the object for which they are written.

The syntax of the Activate Event procedure is as follows:

	Private Sub Worksheet_Activate()

Creating An Event Procedure

To create an Event Procedure:

	
	· Display the code window for the appropriate class module

· Select the Object from the Object drop-down list

· Select the event from the Procedure drop-down list

· Enter the desired code in the Event Procedure

Notes

	

	

	

Excel VBA – Quick Reference Guide
	Subject
	Examples / Notes

	Building Blocks
	VBA Terminology
	Objects (eg Worksheet)

Property (eg Name)

Method (eg Close)

Procedure

Container Objects (eg Workbook)

Collection Objects (eg Worksheets)

Type “Microsoft Excel Objects” in VBE Help to get the Excel object Hierarchy

	
	Visual Basic Editor (VBE)
	The Projects window

The Properties window

The Code window

Alt-F11 – back and forth between VBE and Excel

	
	Changing object properties
	Using the Properties window

OR

Using code:
Object.property = newvalue

Eg:
ActiveSheet.Name = “New Sheet”

	
	Using methods
	Syntax:
object.method

Eg:

ActiveCell.Select

ActiveSheet.Protect

	
	Coding to react to events
	In the code window, select the object from the top left drop down menu and the Event from the top right drop down menu Eg:

Private Sub Worksheet_Activate()

End Sub

	
	Msgbox
	Msgbox(“This is my message”)

vbCrLf (Carriage return and Linefeed)

Allows text displayed on a MsgBox to appear on multiple lines

	
	Adding Buttons
	To toolbar (right click on toolbar and choose Customise)

To worksheet (display Forms or Visual Basic toolbars)

	
	Object Browser
	In VBE, select View / Object Browser to explore the ‘library’ of VBA code

	Subject
	Examples / Notes

	Dealing with Data
	Data Types
	Byte, Boolean, Integer, Long, Single, Double, String, Date, Currency. .Also Variant and Object
Type “Data Type Summary” in VBE Help to get the sizes and ranges for all data types

	
	Variables
	Declaring variables:

Implicitly by just using them

Explicitly (Dim variable as type)

Initialising (i.e. giving a variable a value):

UserName = “My Name”

Deptnumber = 234

	
	Scope
	Procedure Level scope:

Private Sub Worksheet_Activate()

Dim MyVariable As String

 MyVariable = "Jonathan"

End Sub

Module Level scope:

Option Explicit

Dim MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

Public scope:

Option Explicit

Public MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

	
	Modules
	Insert menu to insert new module

	
	Procedures
	Add menu to add new procedure, or type it:

Sub MyProceture

End Sub

	
	Calling Procedures
	
Call MyProcedure

	Subject
	Examples / Notes

	Controlling Program Flow
	Decision Structures
	If X = Y Then

Elseif X = Z Then

Else

End If

	
	
	Select Case username

Case “Liz”

Case “Jonathan”

End Select

	
	Loop Structures
	Fixed Iterations
For ThisCount = 1 to 10

Next ThisCount

	
	
	Variable Iterations

For Each SheetVar In Worksheets

(for Collections)

Next

Do While / Until X = Y

Loop

	Subject
	Examples / Notes

	More User Interaction
	Creating a Custom User Form
	In VBE, select Insert and UserForm

	
	Adding Controls
	Use the control toolbox

	
	Naming Discipline
	With Forms and Buttons and other controls…

Change the name (use the Properties window) – eg:

frmMainCommands

txtUserName

cmdCloseButton

	
	Adding code to forms/controls
	Double-click on the object

Refer to objects in your code, eg:

txtUserName.Value = “Some Text”

	
	Responding to Events
	In Code Window for forms, use top left drop down menu to select a control, and top right drop down menu shows events

Eg:

Private Sub cmdEnterName_Click()

Range("E1").Value = txtUserName

End Sub

Or

Private Sub
txtUserName_AfterUpdate()

If txtName.Value>11 And txtName.Value<15 Then

 Exit Sub

Else

 MsgBox ("Not a valid Dept number")

 txtUserName.Value = ""

End If

End Sub

	Subject
	Examples / Notes

	Debugging and Handling Errors
	Types of Error
	Compile Time

Run Time

Logical

Type “Trappable Errors” in VBE Help to get the list of all trappable errors and their descriptions

	
	Debugging Tools
	On the Debug menu:

Breakpoint

On the View menu:

Locals Window
(all variables)

Watch Window
(your choice of

variables)

Immediate Window

	
	On Error
	
On Error Goto Label

Label:

(must be left justified & with

colon)

On Error Resume Next

	Subject
	Examples / Notes

	Extras
	Line continuation
	Workbooks.Open Filename:= _

 "c:\MyDocuments\Excel VBA\Courses2005.xls"

	
	MsgBox buttons
	Resp = MsgBox(“Do you want to continue?”, _

vbYesNoCancel)

If Resp = 6 then

Msgbox(“You hit ‘Yes’ didn’t you?”)

Elseif Resp = 7 then

Msgbox(“You hit ‘No’ didn’t you?”)

Elseif Resp = 2 then

Msgbox(“You hit ‘Cancel’ didn’t you?”)

End If

Type “VB Constants” in VBE Help to view the selection of VB Constants available

	
	Breaking Out
	Press Ctrl-Break keys to interrupt code manually (or break out of an unending loop)

	
	Stop
	Alternative to Breakpoint

Sub Import()

Stop

End Sub

	
	Other useful code
	Application.Dialogs(xlDialogOpen).Show
ActiveWindow.ActivateNext

Stop Screen Flickering

Running VBA code may cause the screen to flicker. To switch off the screen until the program is run enter the following code line:

Application.ScreenUpdating = False
Screen comes on automatically on completion of the program.
To Save a Workbook and close an Application

ActiveWorkbook.Save

ActiveWorkbook.SaveAs “Employees.xls” (Save Workbook with different name)

Application.Quit (Quit the application. Code can be used in all Office applications

[image: image12.png]

[image: image13.png]

[image: image14.png]

[image: image15.png]

Introduction

Excel VBA

Microsoft Application Series

	Best STL

 Courses never cancelled: guaranteed

 Last minute rescheduling

 24 months access to Microsoft trainers

 12+ months schedule

 UK wide delivery

www.microsofttraining.net

24 months

Locate the name of the macro and select

Click the Add button

Click OK

Properties Window

Project Explorer

Code window

Close button

New Module

Rename Module

Procedure View:

Displays procedures one at a time.

Procedure list

Object list

Procedure separator

Full Module View:

Displays all the procedures in the module one after the other

Child Object

Argument of the Method

Method of the Child Object

Parent Object

Indicates the library or project for which objects are displayed

Create a search by typing search criteria here

List of classes and objects

The Details section provides descriptive information for the selected class or member

List of the members of the selected class or object.

Procedure drop-down list shows all the events for the selected object

Object drop-down list

Version 2.1

