
Excel VBA Introduction

What is Excel VBA?
Excel VBA (Visual Basic for Applications) is a programming language developed by Microsoft that allows you to automate

tasks and create custom functions in Excel. VBA can be used to write macros, which are sequences of instructions that

Excel can execute to perform repetitive tasks, manipulate data, and interact with other applications.

What is Excel VBA and why should I learn it?

Here are some examples of Excel VBA

Example 1: Displaying a Message Box

A simple example of VBA is displaying a message box.

Open the VBA Editor:

Press Alt + F11 to open the VBA editor.

Insert a new module by clicking Insert > Module.

Write the Code:

Sub ShowMessage()

 MsgBox "Hello, World!"

End Sub

Run the Macro:

Press F5 or go back to Excel, press Alt + F8, select ShowMessage, and click Run.

This will display a message box with the text “Hello, World!”.

Example 2: Automating Data Entry

You can use VBA to automate data entry tasks. For instance, you can write a macro to enter a specific value into a cell.

Open the VBA Editor:

Press Alt + F11 to open the VBA editor.

Insert a new module by clicking Insert > Module.

Write the Code:

Sub EnterValue()

 Range("A1").Value = "Automated Entry"

End Sub

Run the Macro:

Press F5 or go back to Excel, press Alt + F8, select EnterValue, and click Run.

This will enter the text “Automated Entry” into cell A1.

Example 3: Looping Through a Range

VBA can also be used to loop through a range of cells and perform actions on each cell.

Open the VBA Editor:

Press Alt + F11 to open the VBA editor.

Insert a new module by clicking Insert > Module.

Write the Code:

Sub LoopThroughRange()

 Dim cell As Range

 For Each cell In Range("A1:A10")

 cell.Value = "Processed"

 Next cell

End Sub

Run the Macro:

Press F5 or go back to Excel, press Alt + F8, select LoopThroughRange, and click Run.

This will change the value of each cell in the range A1:A10 to “Processed”.

These examples illustrate how VBA can be used to automate tasks.

Macros: A Hidden Time Saver in Excel

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/what-is-excel-vba-and-why-should-i-learn-it/
https://www.stl-training.co.uk/b/saving-time-with-macros/

Excel VBA Introduction

The Macro Recorder in Excel
The Macro Recorder in Excel is a tool that allows you to record a

sequence of actions and then play them back to automate repetitive

tasks. Here’s how you can use it with examples:

Example 1: Formatting a Range of Cells

Imagine you frequently need to format a range of cells with a specific

style, such as bold text and a yellow background.

Start Recording:

Go to the Developer tab. If you don’t see it, you can enable it from

Excel Options.

Click Record Macro.

Name the Macro:

Give your macro a descriptive name, like FormatCells.

Optionally, assign a shortcut key and choose where to store the macro.

Perform the Actions:

Select the range of cells you want to format.

Apply the desired formatting (e.g., bold text, yellow background).

Stop Recording:

Click Stop Recording on the Developer tab.

Now, whenever you run the FormatCells macro, Excel will automatically

apply the formatting to the selected range.

Example 2: Inserting a Header and Footer

Suppose you need to insert a specific header and footer in multiple worksheets.

Start Recording:

Name the Macro:

Name your macro, such as InsertHeaderFooter.

Perform the Actions:

Go to the Insert tab, click Header & Footer.

Enter the desired header and footer text.

Stop Recording:

Now, you can run the InsertHeaderFooter macro to quickly add the header and footer to any worksheet.

Example 3: Creating a Simple Report

Imagine you need to create a report that involves copying data from one sheet to another and applying some basic

formatting.

Start Recording:

Name the Macro:

Name your macro, such as CreateReport.

Perform the Actions:

Copy the data from the source sheet.

Paste it into the destination sheet.

Apply any necessary formatting, such as bold headers and borders.

Stop Recording:

Now, you can run the CreateReport macro to automate the report creation process.

Viewing and Editing the Macro

You can view and edit the VBA code generated by the Macro Recorder:

Open the VBA Editor:

Press Alt + F11 to open the VBA editor.

Find Your Macro:

In the Project Explorer, find the module where your macro is stored (usually Module1).

Edit the Code:

You can edit the VBA code to refine your macro or add more functionality.

These examples illustrate how the Macro Recorder can save you time by automating repetitive tasks in Excel.

https://www.stl-training.co.uk/

Excel VBA Introduction

Excel VBA Decision code
Let’s dive into the decision-making structures in Excel VBA: IF and SELECT CASE.

IF Statement

The IF statement is used to execute code based on whether a condition is true or false. Here’s a basic example:

Sub CheckValue()

 Dim score As Integer

 score = 75

 If score >= 90 Then

 MsgBox "Grade: A"

 ElseIf score >= 80 Then

 MsgBox "Grade: B"

 ElseIf score >= 70 Then

 MsgBox "Grade: C"

 Else

 MsgBox "Grade: F"

 End If

End Sub

In this example, the IF statement checks the value of score and displays a message box with the corresponding grade.

SELECT CASE Statement

The SELECT CASE statement is used when you have multiple conditions to check. It’s often cleaner and more readable

than multiple IF...ELSEIF statements. Here’s an example:

Sub CheckDay()

 Dim dayOfWeek As String

 dayOfWeek = "Wednesday"

 Select Case dayOfWeek

 Case "Monday"

 MsgBox "Start of the work week!"

 Case "Wednesday"

 MsgBox "Midweek already!"

 Case "Friday"

 MsgBox "Almost the weekend!"

 Case Else

 MsgBox "Just another day."

 End Select

End Sub

In this example, the SELECT CASE statement checks the value of dayOfWeek and displays a message box with a

corresponding message.

Both structures help control the flow of your VBA code based on different conditions.

How do I sort in Excel VBA?

How to: Excel VBA clear clipboard?

Excel VBA Uppercase, Lowercase and more

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/sort-excel-vba/
https://www.stl-training.co.uk/b/excel-vba-clear-clipboard/
https://www.stl-training.co.uk/b/excel-vba-uppercase-lower-case/

Excel VBA Introduction

The DO LOOP
The Do...Loop statement in VBA is used to repeat a block of code while a condition is true or until a condition becomes

true. Here are some examples to help you understand how it works.

Basic Do...Loop Example

This example demonstrates a simple Do...Loop that continues to run while a counter is less than 10:

Sub BasicDoLoop()

 counter = 0

 Do While counter < 10

 counter = counter + 1

 Debug.Print counter

 Loop

End Sub

In this code, the loop will run as long as counter is less than 10. Each time the loop runs, counter is incremented by 1 and

its value is printed in the Immediate Window.

Do...Loop with If Statement

Now, let’s add an If statement inside the Do...Loop to demonstrate a decision-making process within the loop:

Sub DoLoopWithIf()

 counter = 0

 Do

 counter = counter + 1

 If counter Mod 2 = 0 Then

 Debug.Print counter & " is even"

 Else

 Debug.Print counter & " is odd"

 End If

 Loop While counter < 10

End Sub

In this example, the loop runs while counter is less than 10. Inside the loop, the If statement checks if counter is even or

odd and prints the result.

Do...Loop with Exit Do

Sometimes, you might want to exit the loop before the condition is met. You can use the Exit Do statement for this purpose:

Sub DoLoopWithExit()

 counter = 0

 Do

 counter = counter + 1

 If counter = 5 Then

 Exit Do

 End If

 Debug.Print counter

 Loop While counter < 10

End Sub

In this code, the loop will exit when counter equals 5, even though the condition to continue looping is counter < 10.

https://www.stl-training.co.uk/

Excel VBA Introduction

More DO LOOP examples
This example demonstrates a Do...Loop that runs a fixed number of times:

Sub SimpleDoLoop()

 Do

 Debug.Print "Hello, World!"

 Loop Until False

End Sub

In this code, the loop will run indefinitely because the condition Until False is never met. To stop it, you would need to

manually interrupt the execution.

Do...Loop with If Statement

Here’s an example of a Do...Loop with an If statement that checks a condition:

Sub DoLoopWithIf()

 Do

 If Now > #12:00:00 PM# Then

 Debug.Print "It's past noon!"

 Exit Do

 End If

 Loop

End Sub

In this example, the loop will keep running until the current time is past noon. Once the condition is met, it prints

a message and exits the loop.

Do...Loop with Exit Do

This example shows how to use Exit Do to break out of the loop:

Sub DoLoopWithExit()

 Do

 Debug.Print "Running..."

 Exit Do

 Loop

End Sub

In this code, the loop will run only once because Exit Do is called immediately, breaking out of the loop.

Here’s an example of a Do Until loop in VBA that continues to run until the active cell’s value is an empty string:

Sub DoUntilActiveCellEmpty()

 Do Until ActiveCell.Value = ""

 ' Perform some action

 Debug.Print ActiveCell.Value

 ' Move to the next cell down

 ActiveCell.Offset(1, 0).Select

 Loop

End Sub

Explanation:

Do Until ActiveCell.Value = “”: The loop will continue to run until the active cell’s value is an empty string.

Debug.Print ActiveCell.Value: This line prints the value of the active cell in the Immediate Window.

ActiveCell.Offset(1, 0).Select: This moves the active cell one row down.

This loop will keep moving down the column, printing each cell’s value, until it encounters an empty cell.

https://www.stl-training.co.uk/

Excel VBA Introduction

The FOR NEXT loop and the FOR EACH loop
Let’s dive into the FOR NEXT and FOR EACH loops in Excel VBA with some examples.

Loop Through Excel Worksheets and Workbooks

FOR NEXT Loop

The FOR NEXT loop is used when you know in advance how many times you want to execute a statement or a block of

statements. Here’s the basic syntax:

For counter = start To end [Step step]

 ' Statements to execute

Next counter

counter: A variable that stores the current count.

start: The initial value of the counter.

end: The final value of the counter.

step: (Optional) The amount by which the counter is incremented each

time. The default is 1.

Example 1: Simple FOR NEXT Loop

Sub SimpleForNext()

 Dim i As Integer

 For i = 1 To 5

 MsgBox "The value of i is " & i

 Next i

End Sub

This loop will display a message box five times, showing the values

from 1 to 5.

Example 2: FOR NEXT Loop with Step

Sub ForNextWithStep()

 Dim i As Integer

 For i = 1 To 10 Step 2

 MsgBox "The value of i is " & i

 Next i

End Sub

This loop will display a message box for the values 1, 3, 5, 7, and 9.

FOR EACH Loop

The FOR EACH loop is used to iterate over a collection of objects or an

array. Here’s the basic syntax:

For Each element In group

 ' Statements to execute

Next element

element: A variable that represents the current element in the collection.

group: The collection or array you want to iterate over.

Example 1: FOR EACH Loop with a Collection

Sub ForEachCollection()

 Dim ws As Worksheet

 For Each ws In ThisWorkbook.Worksheets

 MsgBox "The name of the worksheet is " & ws.Name

 Next ws

End Sub

This loop will display a message box for each worksheet in the workbook, showing the name of each worksheet.

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/loop-through-excel-worksheets-and-workbooks/

Excel VBA Introduction

Ask questions on our

post course learning

support forum

Log in using your email

and your post course

email when you

completed the feedback

Example 2: FOR EACH Loop with an Array

Sub ForEachArray()

 Dim arr As Variant

 Dim element As Variant

 arr = Array(1, 2, 3, 4, 5)

 For Each element In arr

 MsgBox "The value of the element is " & element

 Next element

End Sub

This loop will display a message box for each element in the array,

showing the values 1, 2, 3, 4, and 5.

Debugging Tools
Here are the key debugging tools in Excel VBA:

Breakpoints

Purpose: Halt the execution of your code at a specific line.

How to Use: Click in the left margin next to the line of code where you want to set the breakpoint. A red dot will appear.

When you run the macro, it will stop at this line, allowing you to inspect the state of your program.

Step Into (F8)

Purpose: Execute your code line by line.

How to Use: Press F8 to move through your code one line at a time. This helps you see the effect of each line on your

worksheet and variables.

Step Over (Shift+F8)

Purpose: Execute the current line and move to the next one, skipping over any calls to other procedures.

How to Use: Press Shift+F8 to step over procedures, which is useful when you don’t need to debug the called procedures.

Step Out (Ctrl+Shift+F8)

Purpose: Run the remaining lines of the current procedure and return to the calling procedure.

How to Use: Press Ctrl+Shift+F8 to step out of the current procedure.

Immediate Window

Purpose: Test code snippets and evaluate expressions on the fly.

How to Use: Open the Immediate Window by pressing Ctrl+G.

You can type commands and see their results immediately.

Watch Window

Purpose: Monitor the values of variables and expressions as

your code runs.

How to Use: Right-click on a variable and select

“Add Watch” to track its value during execution.

Locals Window

Purpose: Display all local variables and their values.

How to Use: Open the Locals Window from the View menu.

It updates automatically as you step through your code.

Call Stack

Purpose: View the sequence of procedure calls that led to

the current point in your code.

How to Use: Open the Call Stack window from the Debug

menu to see the list of active procedures.

These tools can significantly help you understand and fix

issues in your VBA code.

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html

	Slide 1: Excel VBA Introduction
	Slide 2: Excel VBA Introduction
	Slide 3: Excel VBA Introduction
	Slide 4: Excel VBA Introduction
	Slide 5: Excel VBA Introduction
	Slide 6: Excel VBA Introduction
	Slide 7: Excel VBA Introduction

