Excel VBA Intermediate

Storing information with Variables

Let's dive into the world of Excel VBA variables.

Variables in VBA
Variables are used to store data that your VBA code can manipulate. Think of them as containers that hold information
which can be referenced and manipulated throughout your code.

Declaring Variables
Why declare variables?

Improves Code Readability: Declaring variables makes your code easier
to read and understand.

Error Checking: VBA can catch errors related to undeclared variables.
Memory Management: Helps manage memory usage efficiently.

How to declare variables?
Use the Dim statement:

Dim variableName As DataType

Example:

Dim total As Integer
Dim name As String

Determining Data Types
Choosing the right data type is crucial for efficient memory usage and performance. Here are some common data types:

Integer: Whole numbers.
Long: Larger whole numbers.
Double: Numbers with decimals.

String: Text. =1
Boolean: True or False. I mi““ i
Example: , jh\\lu\

Dim age As Integer
Dim salary As Double
Dim isActive As Boolean

Public vs Private Scope
Scope determines where a variable can be accessed from.

Procedure-Level (Local) Variables: Declared within a procedure using Dim. Accessible only within that procedure.
Module-Level (Private) Variables: Declared at the top of a module using Private. Accessible to all procedures within that
module.

Public Variables: Declared at the top of a module using Public. Accessible from any module in the project.

Example:

Private moduleVariable As Integer
Public globalVariable As String

Sub ExampleProcedure()
Dim localVariable As Double
End Sub


https://www.stl-training.co.uk/

Excel VBA Intermediate @@@

Assigning a Value to a Variable
After declaring a variable, you can assign a value to it using the assignment
operator =.

variableName = value

Examples
Example 1: Storing a Number

Sub StoreNumber()
Dim age As Integer
age = 25
MsgBox "Age: " & age
End Sub

In this example, the variable age is declared as an Integer and assigned the value 25. The MsgBox function then displays
the value of age.

Example 2: Storing Text

Sub StoreText()
Dim name As String
name = "Alice"
MsgBox "Name: " & name
End Sub

Here, the variable name is declared as a String and assigned the value "Alice". The MsgBox function displays the value
of name.

Example 3: Storing a Calculation Result

Sub StoreCalculation()
Dim price As Double
Dim quantity As Integer
Dim total As Double

price = 19.99
quantity = 5
total = price * quantity

MsgBox "Total cost: " & total
End Sub

In this example, price and total are declared as Double, and quantity is declared as an Integer. The total cost is calculated
by multiplying price and quantity, and the result is stored in the total variable.

Example 4: Storing a Boolean Value

Sub StoreBoolean()
Dim isActive As Boolean
isActive = True
MsgBox "Is Active: " & isActive
End Sub

Here, the variable isActive is declared as a Boolean and assigned the value True. The MsgBox function displays the
value of isActive.
How do | sort in Excel VBA?



https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/sort-excel-vba/

Excel VBA Intermediate

Using Variables in Conditions
Variables can also be used in conditions to control the flow of your program.
Example 5: Using Variables in an If Statement
Sub CheckAge()

Dim age As Integer

age =18

If age >= 18 Then
MsgBox "You are an adult."
Else
MsgBox "You are a minor."
End If
End Sub

Using Variables to Trap Errors
You can use variables to store error information and handle errors gracefully.
Example:

On Error GoTo ErrorHandler

Dim result As Double

result = 10 / 0 ' This will cause a division by zero error

Exit Sub

ErrorHandler:
Dim errorMessage As String
errorMessage = "An error occurred: " & Err.Description
MsgBox errorMessage

End Sub

Using the Locals Window

The Locals Window in the VBA editor allows you to observe the values of variables while debugging.

Set a breakpoint in your code by clicking in the margin next to a line of code.

Run your code. When it hits the breakpoint, the Locals Window will display the current values of all variables in the current
scope.

More variable examples

Example 1: Simple Calculation Example 3: Error Handling

Sub CalculateTotal() Sub SafeDivision()
Dim price As Double On Error GoTo ErrorHandler
Dim quantity As Integer Dim numerator As Double
Dim total As Double Dim denominator As Double

Dim result As Double

price = 19.99
quantity = 5 numerator = 10
total = price * quantity denominator = 0

result = numerator / denominator
MsgBox "Total cost: " & total
End Sub MsgBox "Result: " & result
Exit Sub
Example 2: Using Public Variables
ErrorHandler:
Public counter As Integer MsgBox "Error: Division by zero!"
End Sube tasks in Excel.
Sub IncrementCounter()
counter = counter + 1
MsgBox "Counter: " & counter
End Sub


https://www.stl-training.co.uk/

Excel VBA Intermediate

Creating functions

Creating your own functions in Excel VBA can greatly enhance your productivity by allowing you to perform custom
calculations and operations. Let's go through the process of creating User Defined Functions (UDFs) with multiple examples.

Writing Your Own User Defined Functions (UDFs)
A UDF is a custom function that you can create using VBA. These functions can be used in Excel just like built-in functions.

Basic Structure of a UDF
To create a UDF, you need to define a function using the Function keyword, followed by the function name, any arguments,
and the data type of the return value.

Function FunctionName(arguments) As DataType
" Function code
FunctionName = result

End Function

Example 1: Simple Addition Function

Function AddNumbers(x As Double, y As Double) As Double
AddNumbers = x +y
End Function

You can use this function in Excel by typing =AddNumbers(5, 10) in a cell, which will return 15.
Working with Multiple Arguments

You can create functions that take multiple arguments to perform more complex calculations.
Example 2: Calculating the Area of a Rectangle

Function RectangleArea(length As Double, width As Double) As Double
RectangleArea = length * width
End Function

Use this function in Excel by typing =RectangleArea(5, 10) to get the area of a rectangle with length 5 and width 10.
Example 3: Calculating the Average of Three Numbers

Function AverageThreeNumbers(a As Double, b As Double, c As Double) As Double
AverageThreeNumbers = (@ + b +¢) /3
End Function

Use this function in Excel by typing =AverageThreeNumbers(5, 10, 15) to get the average of the three numbers.

Using Your Function in Excel
Once you've created a UDF, you can use it in Excel just like any other function. Here’s how you can do it:

Open the Visual Basic for Applications (VBA) editor by pressing Alt + F11.
Insert a new module by clicking Insert > Module.

Copy and paste your function code into the module.

Close the VBA editor.

Use your function in Excel by typing =FunctionName(arguments) in a cell.
Advanced Examples

Example 4: Calculating Compound Interest

Function Compoundinterest(principal As Double, rate As Double, periods As Integer) As Double
Compoundlinterest = principal * (1 + rate) * periods
End Function

Use this function in Excel by typing =Compoundinterest(1000, 0.05, 10) to calculate the compound interest on a principal of
1000 at a 5% interest rate over 10 periods.

Creating UDFs can significantly extend the capabilities of Excel, allowing you to perform custom calculations tailored to your
specific needs.


https://www.stl-training.co.uk/

Excel VBA Intermediate @@@

Message Boxes and Input Boxes

Let's go through some examples of how to create Message Boxes and Input Boxes in Excel VBA.

1. Displaying a Message
To display a simple message box, you can use the MsgBox function. Here's an example:

Sub DisplayMessage()
MsgBox "Hello, this is a simple message box!"
End Sub

2. Adding a Yes/No User Choice
To create a message box with Yes and No buttons, you can use the vbYesNo constant. You can also capture the user's
response:

Sub YesNoMessageBox()
Dim response As VbMsgBoxResult
response = MsgBox("Do you want to continue?”, vbYesNo, "Yes/No Example")

If response = vbYes Then
MsgBox "You chose Yes!"
Else
MsgBox "You chose No!"
End If
End Sub

3. Getting Feedback from the End User
To get input from the user, you can use the InputBox function. Here's an
example:

Sub GetUserInput()
Dim userlnput As String
userlnput = InputBox("Please enter your name:", "User Input")

If userlnput <> "" Then
MsgBox "Hello, " & userinput &
Else
MsgBox "You didn't enter anything."
End If
End Sub

These examples should help you get started with creating Message Boxes and Input Boxes in Excel VBA.

Handling Errors

let's look at handling errors in Excel VBA with some examples!

Defining VBA's Error Trapping Options
VBA provides three main error trapping options:

On Error GoTo 0: Disables any error handling in the current procedure.

On Error Resume Next: Continues execution with the next line of code after an error occurs.

On Error GoTo [label]: Transfers control to a specified line label when an error occurs.

Capturing Errors with the On Error Statement

The On Error statement is used to define how VBA should handle errors. Here are the three main forms:

On Error GoTo 0: This is the default setting. It stops code execution and displays an error message.
On Error Resume Next: This tells VBA to ignore the error and continue with the next line of code.
On Error GoTo [label]: This directs VBA to jump to a specific line label when an error occurs.


https://www.stl-training.co.uk/

Excel VBA Intermediate

Example:
Sub ExampleOnError()
On Error GoTo ErrorHandler
Dim x As Integer
x =1/0"This will cause a division by zero error
Exit Sub
ErrorHandler:
MsgBox "An error occurred: " & Err.Description
End Sub

Determining the Err Object
The Err object contains information about the error that occurred. Key properties include:

Err.Number: The error number.
Err.Description: A description of the error.
Err.Source: The name of the object or application that caused the error.
Example:
Sub ExampleErrObject()
On Error Resume Next
Dim x As Integer
x=1/0
If Err.Number <> 0 Then
MsgBox "Error " & Err.Number & ": " & Err.Description
Err.Clear ' Clear the error
End If
End Sub

Coding an Error-Handling Routine
An error-handling routine is a section of code that executes when an error occurs. It typically includes:

Error handling code: To manage the error.
Cleanup code: To release resources or reset states.
Resume statement: To continue execution after handling the error.
Example:
Sub ExampleErrorHandlingRoutine()

On Error GoTo ErrorHandler

' Code that may cause an error

Dim x As Integer

x=1/0

Exit Sub
ErrorHandler:

MsgBox "An error occurred: " & Err.Description

' Cleanup code

Resume Next ' Continue with the next line of code
End Sub

Using Inline Error Handling
Inline error handling allows you to handle errors directly where they occur, rather than jumping to a separate error handler.
Example:
Sub ExamplelnlineErrorHandling()
On Error Resume Next
Dim x As Integer
x=1/0
If Err.Number <> 0 Then
MsgBox "Error handled inline: " & Err.Description
Err.Clear
End If
On Error GoTo 0 ' Reset error handling
End Sub


https://www.stl-training.co.uk/

Excel VBA Intermediate @@@

Creating custom dialogue boxes with UserForms

Creating custom dialogue boxes with UserForms in Excel VBA can greatly enhance the interactivity of your spreadsheets.
Let's go through each step with examples:

1. Drawing UserForms
To create a UserForm:

Open the Visual Basic for Applications (VBA) editor by pressing Alt + F11.
Insert a new UserForm by selecting Insert > UserForm.

2. Setting UserForm Properties, Events, and Methods
You can set properties such as the form’s name, caption, and size in the Properties window. For example:

Name: MyUserForm
Caption: Custom Dialog
To handle events like initializing the form, you can use the code window:

Private Sub UserForm_Initialize()
Me.Caption = "Welcome to My Custom Dialog"
End Sub

3. Using Text Boxes, Command Buttons, Combo Boxes, and Other Controls
You can add controls by selecting them from the Toolbox and drawing them
on the UserForm.

For example:

TextBox: For user input.
CommandButton: To trigger actions.
ComboBox: For dropdown selections.

4, Formatting Controls
You can format controls by setting their properties. For example, to set the
text box properties:

Private Sub UserForm_Initialize()
Me.TextBox1.Text = "Enter your name"
Me.TextBox1.Font.Size = 12
Me.TextBox1.Font.Bold = True

End Sub

5. Applying Code to Controls
You can write VBA code to handle events for controls. For example, to handle
a button click:

Private Sub CommandButton1_Click()
MsgBox "Hello, " & Me.TextBox1.Text
End Sub

6. How to Launch a Form in Code
To show the UserForm, you can use the following code in a module:

Sub ShowMyUserForm()
MyUserForm.Show
End Sub


https://www.stl-training.co.uk/

Excel VBA Intermediate @@@

Example 1 _ _ Example 2
Here's a complete example that ties everything together: | et's create a more advanced UserForm example that includes
multiple controls, validation, and dynamic updates.

Create a UserForm named MyUserForm. We'll create a form for user registration with fields for name,
Add a TextBox (TextBox1) and a CommandButton email, and age, and a submit button that validates the input
(CommandButton?). and displays a summary.
Set the properties and write the following code:

Me.Caption = "Welcome to My Custom Dialog"

MeTeXtBOX‘]TeXt = "Enter yOUr name" ’I Draw|ng the UserForm

Me.TextBox1.Font.Size =12 Open the VBA editor (Alt + F11).

Me.TextBox1.Font.Bold = True Insert a new UserForm (Insert > UserForm).
End Sub Name the UserForm UserFormRegistration.

MsgBox "Hello, * & Me.TextBox1.Text Add the following controls to the UserForm:
End Sub

Labels: For “Name”, “Email”, and "Age”.

In @ module, add the code to show the form: TextBoxes: For user input (TextBoxName, TextBoxEmail, TextBoxAge).
Sub ShowMyUserForm() CommandButton: For submission (CommandButtonSubmit).

MyUserForm.Show
End Sub 3. Setting Properties

Set properties for better user experience:

Run ShowMyUserForm to display your custom

dialog box. UserForm: Caption = "User Registration"
TextBoxName: Name = "TextBoxName"
TextBoxEmail: Name = "TextBoxEmail"
TextBoxAge: Name = "TextBoxAge'
CommandButtonSubmit: Caption = "Submit",
Name = "CommandButtonSubmit"

4. Writing Code for Initialization
Initialize the form with default values and formatting:

Private Sub UserForm_Initialize()
Me.Caption = "User Registration"
Me. TextBoxName.Text = "
Me.TextBoxEmail.Text =
Me.TextBoxAge.Text = "

End Sub

AL

IYTTLLTTETL L

5. Adding Validation and Submission Code
Validate user input and display a summary:

Private Sub CommandButtonSubmit_Click()
Dim userName As String
Dim userEmail As String
Dim userAge As Integer

How to: Excel VBA clear clipboard userName = Me.TextBoxName. Text

userEmail = Me.TextBoxEmail. Text
Excel VBA Uppercase, Lowercase and more

'Validate Name

If userName = " Then
MsgBox "Please enter your name.", vbExclamation
Exit Sub

End If


https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/excel-vba-clear-clipboard/
https://www.stl-training.co.uk/b/excel-vba-uppercase-lower-case/

Excel VBA Intermediate

(SIDL)

' Validate Email

If userEmail = "" Or InStr(1, userEmail, "@") = 0 Then
MsgBox "Please enter a valid email address.", vbExclamation
Exit Sub

End If

' Validate Age
If IsNumeric(Me.TextBoxAge.Text) Then
userAge = CInt(Me.TextBoxAge.Text)
If userAge <= 0 Or userAge > 120 Then
MsgBox "Please enter a valid age.", vbExclamation
Exit Sub
End If
Else
MsgBox "Please enter a numeric age.", vbExclamation
Exit Sub
End If

' Display Summary

MsgBox "Registration Successfull" & vbCrlLf & _
"Name: " & userName & vbCrLf & _
"Email: " & userEmail & vbCrlLf & _
"Age: " & userAge, vbinformation

End Sub

6. Launching the UserForm
Add a module to launch the UserForm:

Sub ShowUserFormRegistration()
UserFormRegistration.Show
End Sub

Complete Example
Here's the complete code for the UserForm and module:

UserForm Code:

Private Sub UserForm_Initialize()
Me.Caption = "User Registration"
Me.TextBoxName.Text = "'
Me.TextBoxEmail. Text =
Me.TextBoxAge.Text = "

End Sub

Private Sub CommandButtonSubmit_Click()
Dim userName As String
Dim userEmail As String
Dim userAge As Integer

userName = Me.TextBoxName.Text
userEmail = Me.TextBoxEmail.Text

' Validate Name

If userName = "' Then
MsgBox "Please enter your name.", vbExclamation
Exit Sub

End If

' Validate Email

If userEmail = "" Or InStr(1, userEmail, "@") = 0 Then
MsgBox "Please enter a valid email address.", vbExclamation
Exit Sub

End If

' Validate Age
If IsNumeric(Me.TextBoxAge.Text) Then
userAge = CInt(Me.TextBoxAge.Text)
If userAge <= 0 Or userAge > 120 Then
MsgBox "Please enter a valid age.", vbExclamation
Exit Sub
End If
Else
MsgBox "Please enter a numeric age.", vbExclamation
Exit Sub
End If

' Display Summary

MsgBox "Registration Successfull" & vbCrLf & _
"Name: " & userName & vbCrLf & _
"Email: " & userEmail & vbCrLf & _
"Age: " & userAge, vblnformation

End Sub

Module Code:

Sub ShowUserFormRegistration()

UserFormRegistration.Show
End Sub
This example demonstrates how to create a more complex

UserForm with multiple controls, input validation, and dynamic
updates

/ Aok questions on our

post course learning
support forum

Log in using your email
and your post course
email when you
completed the feedback

g LW



https://www.stl-training.co.uk/
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html

	Slide 1: Excel VBA Intermediate
	Slide 2: Excel VBA Intermediate
	Slide 3: Excel VBA Intermediate
	Slide 4: Excel VBA Intermediate
	Slide 5: Excel VBA Intermediate
	Slide 6: Excel VBA Intermediate
	Slide 7: Excel VBA Intermediate
	Slide 8: Excel VBA Intermediate
	Slide 9: Excel VBA Intermediate

