
Excel VBA Intermediate

Storing information with Variables
Let’s dive into the world of Excel VBA variables.

Variables in VBA

Variables are used to store data that your VBA code can manipulate. Think of them as containers that hold information

which can be referenced and manipulated throughout your code.

Declaring Variables

Why declare variables?

Improves Code Readability: Declaring variables makes your code easier

to read and understand.

Error Checking: VBA can catch errors related to undeclared variables.

Memory Management: Helps manage memory usage efficiently.

How to declare variables?

Use the Dim statement:

Dim variableName As DataType

Example:

Dim total As Integer

Dim name As String

Determining Data Types

Choosing the right data type is crucial for efficient memory usage and performance. Here are some common data types:

Integer: Whole numbers.

Long: Larger whole numbers.

Double: Numbers with decimals.

String: Text.

Boolean: True or False.

Example:

Dim age As Integer

Dim salary As Double

Dim isActive As Boolean

Public vs Private Scope

Scope determines where a variable can be accessed from.

Procedure-Level (Local) Variables: Declared within a procedure using Dim. Accessible only within that procedure.

Module-Level (Private) Variables: Declared at the top of a module using Private. Accessible to all procedures within that

module.

Public Variables: Declared at the top of a module using Public. Accessible from any module in the project.

Example:

Private moduleVariable As Integer

Public globalVariable As String

Sub ExampleProcedure()

 Dim localVariable As Double

End Sub

https://www.stl-training.co.uk/

Excel VBA Intermediate
Assigning a Value to a Variable

After declaring a variable, you can assign a value to it using the assignment

operator =.

variableName = value

Examples

Example 1: Storing a Number

Sub StoreNumber()

 Dim age As Integer

 age = 25

 MsgBox "Age: " & age

End Sub

In this example, the variable age is declared as an Integer and assigned the value 25. The MsgBox function then displays

the value of age.

Example 2: Storing Text

Sub StoreText()

 Dim name As String

 name = "Alice"

 MsgBox "Name: " & name

End Sub

Here, the variable name is declared as a String and assigned the value "Alice". The MsgBox function displays the value

of name.

Example 3: Storing a Calculation Result

Sub StoreCalculation()

 Dim price As Double

 Dim quantity As Integer

 Dim total As Double

 price = 19.99

 quantity = 5

 total = price * quantity

 MsgBox "Total cost: " & total

End Sub

In this example, price and total are declared as Double, and quantity is declared as an Integer. The total cost is calculated

by multiplying price and quantity, and the result is stored in the total variable.

Example 4: Storing a Boolean Value

Sub StoreBoolean()

 Dim isActive As Boolean

 isActive = True

 MsgBox "Is Active: " & isActive

End Sub

Here, the variable isActive is declared as a Boolean and assigned the value True. The MsgBox function displays the

value of isActive.

How do I sort in Excel VBA?

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/sort-excel-vba/

Excel VBA Intermediate
Using Variables in Conditions

Variables can also be used in conditions to control the flow of your program.

Example 5: Using Variables in an If Statement

Sub CheckAge()

 Dim age As Integer

 age = 18

 If age >= 18 Then

 MsgBox "You are an adult."

 Else

 MsgBox "You are a minor."

 End If

End Sub

Using Variables to Trap Errors

You can use variables to store error information and handle errors gracefully.

Example:

On Error GoTo ErrorHandler

Dim result As Double

result = 10 / 0 ' This will cause a division by zero error

Exit Sub

ErrorHandler:

 Dim errorMessage As String

 errorMessage = "An error occurred: " & Err.Description

 MsgBox errorMessage

End Sub

Using the Locals Window

The Locals Window in the VBA editor allows you to observe the values of variables while debugging.

Set a breakpoint in your code by clicking in the margin next to a line of code.

Run your code. When it hits the breakpoint, the Locals Window will display the current values of all variables in the current

scope.

More variable examples

Example 1: Simple Calculation

Sub CalculateTotal()

 Dim price As Double

 Dim quantity As Integer

 Dim total As Double

 price = 19.99

 quantity = 5

 total = price * quantity

 MsgBox "Total cost: " & total

End Sub

Example 2: Using Public Variables

Public counter As Integer

Sub IncrementCounter()

 counter = counter + 1

 MsgBox "Counter: " & counter

End Sub

Example 3: Error Handling

Sub SafeDivision()

 On Error GoTo ErrorHandler

 Dim numerator As Double

 Dim denominator As Double

 Dim result As Double

 numerator = 10

 denominator = 0

 result = numerator / denominator

 MsgBox "Result: " & result

 Exit Sub

ErrorHandler:

 MsgBox "Error: Division by zero!"

End Sube tasks in Excel.

https://www.stl-training.co.uk/

Excel VBA Intermediate

Creating functions
Creating your own functions in Excel VBA can greatly enhance your productivity by allowing you to perform custom

calculations and operations. Let’s go through the process of creating User Defined Functions (UDFs) with multiple examples.

Writing Your Own User Defined Functions (UDFs)

A UDF is a custom function that you can create using VBA. These functions can be used in Excel just like built-in functions.

Basic Structure of a UDF

To create a UDF, you need to define a function using the Function keyword, followed by the function name, any arguments,

and the data type of the return value.

Function FunctionName(arguments) As DataType

 ' Function code

 FunctionName = result

End Function

Example 1: Simple Addition Function

Function AddNumbers(x As Double, y As Double) As Double

 AddNumbers = x + y

End Function

You can use this function in Excel by typing =AddNumbers(5, 10) in a cell, which will return 15.

Working with Multiple Arguments

You can create functions that take multiple arguments to perform more complex calculations.

Example 2: Calculating the Area of a Rectangle

Function RectangleArea(length As Double, width As Double) As Double

 RectangleArea = length * width

End Function

Use this function in Excel by typing =RectangleArea(5, 10) to get the area of a rectangle with length 5 and width 10.

Example 3: Calculating the Average of Three Numbers

Function AverageThreeNumbers(a As Double, b As Double, c As Double) As Double

 AverageThreeNumbers = (a + b + c) / 3

End Function

Use this function in Excel by typing =AverageThreeNumbers(5, 10, 15) to get the average of the three numbers.

Using Your Function in Excel

Once you’ve created a UDF, you can use it in Excel just like any other function. Here’s how you can do it:

Open the Visual Basic for Applications (VBA) editor by pressing Alt + F11.

Insert a new module by clicking Insert > Module.

Copy and paste your function code into the module.

Close the VBA editor.

Use your function in Excel by typing =FunctionName(arguments) in a cell.

Advanced Examples

Example 4: Calculating Compound Interest

Function CompoundInterest(principal As Double, rate As Double, periods As Integer) As Double

 CompoundInterest = principal * (1 + rate) ^ periods

End Function

Use this function in Excel by typing =CompoundInterest(1000, 0.05, 10) to calculate the compound interest on a principal of

1000 at a 5% interest rate over 10 periods.

Creating UDFs can significantly extend the capabilities of Excel, allowing you to perform custom calculations tailored to your

specific needs.

https://www.stl-training.co.uk/

Excel VBA Intermediate

Message Boxes and Input Boxes
Let’s go through some examples of how to create Message Boxes and Input Boxes in Excel VBA.

1. Displaying a Message

To display a simple message box, you can use the MsgBox function. Here’s an example:

Sub DisplayMessage()

 MsgBox "Hello, this is a simple message box!"

End Sub

2. Adding a Yes/No User Choice

To create a message box with Yes and No buttons, you can use the vbYesNo constant. You can also capture the user’s

response:

Sub YesNoMessageBox()

 Dim response As VbMsgBoxResult

 response = MsgBox("Do you want to continue?", vbYesNo, "Yes/No Example")

 If response = vbYes Then

 MsgBox "You chose Yes!"

 Else

 MsgBox "You chose No!"

 End If

End Sub

3. Getting Feedback from the End User

To get input from the user, you can use the InputBox function. Here’s an

example:

Sub GetUserInput()

 Dim userInput As String

 userInput = InputBox("Please enter your name:", "User Input")

 If userInput <> "" Then

 MsgBox "Hello, " & userInput & "!"

 Else

 MsgBox "You didn't enter anything."

 End If

End Sub

These examples should help you get started with creating Message Boxes and Input Boxes in Excel VBA.

Handling Errors
let’s look at handling errors in Excel VBA with some examples!

Defining VBA’s Error Trapping Options

VBA provides three main error trapping options:

On Error GoTo 0: Disables any error handling in the current procedure.

On Error Resume Next: Continues execution with the next line of code after an error occurs.

On Error GoTo [label]: Transfers control to a specified line label when an error occurs.

Capturing Errors with the On Error Statement

The On Error statement is used to define how VBA should handle errors. Here are the three main forms:

On Error GoTo 0: This is the default setting. It stops code execution and displays an error message.

On Error Resume Next: This tells VBA to ignore the error and continue with the next line of code.

On Error GoTo [label]: This directs VBA to jump to a specific line label when an error occurs.

https://www.stl-training.co.uk/

Excel VBA Intermediate
Example:

Sub ExampleOnError()

 On Error GoTo ErrorHandler

 Dim x As Integer

 x = 1 / 0 ' This will cause a division by zero error

 Exit Sub

ErrorHandler:

 MsgBox "An error occurred: " & Err.Description

End Sub

Determining the Err Object

The Err object contains information about the error that occurred. Key properties include:

Err.Number: The error number.

Err.Description: A description of the error.

Err.Source: The name of the object or application that caused the error.

Example:

Sub ExampleErrObject()

 On Error Resume Next

 Dim x As Integer

 x = 1 / 0

 If Err.Number <> 0 Then

 MsgBox "Error " & Err.Number & ": " & Err.Description

 Err.Clear ' Clear the error

 End If

End Sub

Coding an Error-Handling Routine

An error-handling routine is a section of code that executes when an error occurs. It typically includes:

Error handling code: To manage the error.

Cleanup code: To release resources or reset states.

Resume statement: To continue execution after handling the error.

Example:

Sub ExampleErrorHandlingRoutine()

 On Error GoTo ErrorHandler

 ' Code that may cause an error

 Dim x As Integer

 x = 1 / 0

 Exit Sub

ErrorHandler:

 MsgBox "An error occurred: " & Err.Description

 ' Cleanup code

 Resume Next ' Continue with the next line of code

End Sub

Using Inline Error Handling

Inline error handling allows you to handle errors directly where they occur, rather than jumping to a separate error handler.

Example:

Sub ExampleInlineErrorHandling()

 On Error Resume Next

 Dim x As Integer

 x = 1 / 0

 If Err.Number <> 0 Then

 MsgBox "Error handled inline: " & Err.Description

 Err.Clear

 End If

 On Error GoTo 0 ' Reset error handling

End Sub

https://www.stl-training.co.uk/

Excel VBA Intermediate

Creating custom dialogue boxes with UserForms
Creating custom dialogue boxes with UserForms in Excel VBA can greatly enhance the interactivity of your spreadsheets.

Let’s go through each step with examples:

1. Drawing UserForms

To create a UserForm:

Open the Visual Basic for Applications (VBA) editor by pressing Alt + F11.

Insert a new UserForm by selecting Insert > UserForm.

2. Setting UserForm Properties, Events, and Methods

You can set properties such as the form’s name, caption, and size in the Properties window. For example:

Name: MyUserForm

Caption: Custom Dialog

To handle events like initializing the form, you can use the code window:

Private Sub UserForm_Initialize()

 Me.Caption = "Welcome to My Custom Dialog"

End Sub

3. Using Text Boxes, Command Buttons, Combo Boxes, and Other Controls

You can add controls by selecting them from the Toolbox and drawing them

on the UserForm.

For example:

TextBox: For user input.

CommandButton: To trigger actions.

ComboBox: For dropdown selections.

4. Formatting Controls

You can format controls by setting their properties. For example, to set the

text box properties:

Private Sub UserForm_Initialize()

 Me.TextBox1.Text = "Enter your name"

 Me.TextBox1.Font.Size = 12

 Me.TextBox1.Font.Bold = True

End Sub

5. Applying Code to Controls

You can write VBA code to handle events for controls. For example, to handle

a button click:

Private Sub CommandButton1_Click()

 MsgBox "Hello, " & Me.TextBox1.Text

End Sub

6. How to Launch a Form in Code

To show the UserForm, you can use the following code in a module:

Sub ShowMyUserForm()

 MyUserForm.Show

End Sub

https://www.stl-training.co.uk/

Excel VBA Intermediate
Example 1

Here’s a complete example that ties everything together:

Create a UserForm named MyUserForm.

Add a TextBox (TextBox1) and a CommandButton

(CommandButton1).

Set the properties and write the following code:

Private Sub UserForm_Initialize()

 Me.Caption = "Welcome to My Custom Dialog"

 Me.TextBox1.Text = "Enter your name"

 Me.TextBox1.Font.Size = 12

 Me.TextBox1.Font.Bold = True

End Sub

Private Sub CommandButton1_Click()

 MsgBox "Hello, " & Me.TextBox1.Text

End Sub

In a module, add the code to show the form:

Sub ShowMyUserForm()

 MyUserForm.Show

End Sub

Run ShowMyUserForm to display your custom

dialog box.

Example 2

Let’s create a more advanced UserForm example that includes

multiple controls, validation, and dynamic updates.

We’ll create a form for user registration with fields for name,

email, and age, and a submit button that validates the input

and displays a summary.

Step-by-Step Advanced Example

1. Drawing the UserForm

Open the VBA editor (Alt + F11).

Insert a new UserForm (Insert > UserForm).

Name the UserForm UserFormRegistration.

2. Adding Controls

Add the following controls to the UserForm:

Labels: For “Name”, “Email”, and “Age”.

TextBoxes: For user input (TextBoxName, TextBoxEmail, TextBoxAge).

CommandButton: For submission (CommandButtonSubmit).

3. Setting Properties

Set properties for better user experience:

UserForm: Caption = "User Registration"

TextBoxName: Name = "TextBoxName"

TextBoxEmail: Name = "TextBoxEmail"

TextBoxAge: Name = "TextBoxAge"

CommandButtonSubmit: Caption = "Submit",

Name = "CommandButtonSubmit"

4. Writing Code for Initialization

Initialize the form with default values and formatting:

Private Sub UserForm_Initialize()

 Me.Caption = "User Registration"

 Me.TextBoxName.Text = ""

 Me.TextBoxEmail.Text = ""

 Me.TextBoxAge.Text = ""

End Sub

5. Adding Validation and Submission Code

Validate user input and display a summary:

Private Sub CommandButtonSubmit_Click()

 Dim userName As String

 Dim userEmail As String

 Dim userAge As Integer

 userName = Me.TextBoxName.Text

 userEmail = Me.TextBoxEmail.Text

 ' Validate Name

 If userName = "" Then

 MsgBox "Please enter your name.", vbExclamation

 Exit Sub

 End If

.

How to: Excel VBA clear clipboard

Excel VBA Uppercase, Lowercase and more

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/b/excel-vba-clear-clipboard/
https://www.stl-training.co.uk/b/excel-vba-uppercase-lower-case/

Excel VBA Intermediate

Ask questions on our

post course learning

support forum

Log in using your email

and your post course

email when you

completed the feedback

' Validate Email

 If userEmail = "" Or InStr(1, userEmail, "@") = 0 Then

 MsgBox "Please enter a valid email address.", vbExclamation

 Exit Sub

 End If

 ' Validate Age

 If IsNumeric(Me.TextBoxAge.Text) Then

 userAge = CInt(Me.TextBoxAge.Text)

 If userAge <= 0 Or userAge > 120 Then

 MsgBox "Please enter a valid age.", vbExclamation

 Exit Sub

 End If

 Else

 MsgBox "Please enter a numeric age.", vbExclamation

 Exit Sub

 End If

 ' Display Summary

 MsgBox "Registration Successful!" & vbCrLf & _

 "Name: " & userName & vbCrLf & _

 "Email: " & userEmail & vbCrLf & _

 "Age: " & userAge, vbInformation

 End Sub

 6. Launching the UserForm

 Add a module to launch the UserForm:

 Sub ShowUserFormRegistration()

 UserFormRegistration.Show

 End Sub

 Complete Example

 Here’s the complete code for the UserForm and module:

 UserForm Code:

 Private Sub UserForm_Initialize()

 Me.Caption = "User Registration"

 Me.TextBoxName.Text = ""

 Me.TextBoxEmail.Text = ""

 Me.TextBoxAge.Text = ""

 End Sub

 Private Sub CommandButtonSubmit_Click()

 Dim userName As String

 Dim userEmail As String

 Dim userAge As Integer

 userName = Me.TextBoxName.Text

 userEmail = Me.TextBoxEmail.Text

 ' Validate Name

 If userName = "" Then

 MsgBox "Please enter your name.", vbExclamation

 Exit Sub

 End If

' Validate Email

 If userEmail = "" Or InStr(1, userEmail, "@") = 0 Then

 MsgBox "Please enter a valid email address.", vbExclamation

 Exit Sub

 End If

 ' Validate Age

 If IsNumeric(Me.TextBoxAge.Text) Then

 userAge = CInt(Me.TextBoxAge.Text)

 If userAge <= 0 Or userAge > 120 Then

 MsgBox "Please enter a valid age.", vbExclamation

 Exit Sub

 End If

 Else

 MsgBox "Please enter a numeric age.", vbExclamation

 Exit Sub

 End If

 ' Display Summary

 MsgBox "Registration Successful!" & vbCrLf & _

 "Name: " & userName & vbCrLf & _

 "Email: " & userEmail & vbCrLf & _

 "Age: " & userAge, vbInformation

 End Sub

 Module Code:

 Sub ShowUserFormRegistration()

 UserFormRegistration.Show

 End Sub

 This example demonstrates how to create a more complex

 UserForm with multiple controls, input validation, and dynamic

 updates

https://www.stl-training.co.uk/
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html
https://www.stl-training.co.uk/thread-1-microsoft-office-course-support.html

	Slide 1: Excel VBA Intermediate
	Slide 2: Excel VBA Intermediate
	Slide 3: Excel VBA Intermediate
	Slide 4: Excel VBA Intermediate
	Slide 5: Excel VBA Intermediate
	Slide 6: Excel VBA Intermediate
	Slide 7: Excel VBA Intermediate
	Slide 8: Excel VBA Intermediate
	Slide 9: Excel VBA Intermediate

