

Rev 2-1

MicrosoftTraining.net

Excel VBA
Advanced

Courses never

Cancelled

24 Months

Online Support

12+ Months

Schedule

UK Wide

Delivery

Accredited Learning Provider
Certified Silver Partner

Welcome to your Excel VBA Advanced training course

 Record macros

 The visual basic Editor

 Understand objects (Object oriented programming)

 Control structure using decision code (If Then Else & Select Case)

 Understand and use loops (Do, For Next, For Each)

 Test code and debugging tools

Microsoft Office Training Series

MicrosoftTraining.net/Feedback

Microsoft Technical Series

Professional Development Series

 www.MicrosoftTraining.net 0207 987 3777 i

Contents

Welcome to your Excel VBA Advanced training course i

Unit 1 - Working with Ranges ... 1

What is a Range? ... 1

Range Property of the Application ... 1

Cells Property .. 1

The SpecialCells Method .. 2

Naming Ranges .. 3

Working with Collections .. 4

Unit 2 - Charts ... 9

Creating charts from worksheet data .. 9

Key Properties and methods of the chart object ... 9

Creating Charts from Arrays .. 10

Unit 3 - PivotTable Object ... 12

Understanding PivotTables .. 12

Creating A PivotTable .. 12

Procedure ... 12

Using the PivotTable Wizard Method .. 13

Using PivotFields .. 15

Unit 4 - Working with Arrays .. 17

What is an Array ... 17

Array Sizes .. 17

One Dimensional Arrays ... 17

Arrays with Multiple Dimensions ... 18

A word about index numbers ... 19

Ubound and Lbound .. 20

Saving arrays in names .. 20

Unit 5 - Triggers and Events ... 22

Workbook Events ... 23

Worksheet Events .. 24

Timer Controlled Macro .. 24

Unit 6 - Working with Text Files ... 25

Importing a Text File... 25

FileStream ... 26

Unit 7 - Working with Procedures and Parameters 27

ii 0207 987 3777 www.MicrosoftTraining.net

Procedure Arguments ... 27

Passing Arguments ... 27

Optional Arguments .. 28

Default Values .. 29

Passing arguments by value and reference .. 30

Unit 8 - Active X Data Objects .. 32

Key Objects .. 32

A word about the connection string .. 34

Unit 9 - Creating Add-Ins .. 38

VBA Password Protection .. 39

Unit 9 - About Macro Security .. 40

Macro security settings and their effects ... 40

Change Macro Security Settings ... 41

Appendix ... 41

Class Modules .. 41

What can be done with Class Modules? .. 41

Why use Class Modules? .. 42

What is a Class? ... 42

How Does a Class Module Work? ... 42

Key Elements in a class module ... 43

Property Get and Let Procedures .. 43

Referring to user defined Objects in Code .. 45

Using IntelliSense™ .. 45

Programming Techniques ... 46

Best Practice for Excel Programming ... 46

www.MicrosoftTraining.net 0207 987 3777 1

Unit 1 - Working with Ranges

In this unit you will learn how to:

 Understand the range object

 Use the Special cell method

 Work with collections

What is a Range?
When we refer to a range in Excel we mean either a singular cell, a rectangular

block of cells, or a union of many rectangular blocks. In VBA Range is an object

with its own properties and methods. Just to complicate things range can also be

a property of the application object, the worksheet object and indeed the range

object, where it refers to a specified range object.

Range Property of the Application
You can use the range property of the application to refer to a range object on

the active worksheet.

For example;

Range(“B2”)

Range(“A1:B7”)

Range(“A1:B3,E1:O9”)

Note the last example refers to a union, or non-contiguous range.

Cells Property
 The Cells Property of the range object can be used to specify the

parameters in the range property to define a range object.

For example the following refers to range A1:E5

Range (Cells(1,1), Cells (5,5))

The cells property can also be used to refer to particular cells within a range; or a

range within a range.

2 0207 987 3777 www.MicrosoftTraining.net

The following refers to cell F9

Range (“D10:G20”).Cells (0,3)

You can also shortcut this reference thus

Range (“D10:G20”) (0,3)

The SpecialCells Method
The SpecialCells method allows certain types of cell to be identified within a

range.

It has the following syntax:

SpecialCells(Type, Value)

The type argument specifies the cells to be included

 xlCellTypeAllFormatConditions Cells of any format

xlCellTypeAllValidation Cells having validation criteria

xlCellTypeBlanks Empty cells

xlCellTypeComments Cells containing notes

xlCellTypeConstants Cells containing constants

xlCellTypeFormulas Cells containing formulas

xlCellTypeLastCell The last cell in the used range

xlCellTypeSameFormatConditions Cells having the same format

xlCellTypeSameValidation Cells having the same validation criteria

xlCellTypeVisible All visible cells

xlCellTypeFormulas. Cells containing formulas

xlCellTypeLastCell. The last cell in the used range

xlCellTypeSameFormatConditions. Cells having the same format

xlCellTypeSameValidation. Cells having the same validation criteria

xlCellTypeVisible. All visible cells

www.MicrosoftTraining.net 0207 987 3777 3

This argument is used to determine which types of cells to include in the result

xlErrors

xlLogical

xlNumbers

xlTextValues

The following code will delete all the numbers in a worksheet, leaving only text

data and formulae in place

Sub DeleteNumbersInworksheet()

 Cells.SpecialCells(xlCellTypeConstants, xlNumbers).ClearContents

End Sub

Naming Ranges
One of the most useful techniques in Excel is to name ranges. A named range can

simplify code as it is possible to refer to the name and not the cell references

To create a named range we use the add method of the workbook’s names

collection. The following code creates a named range called “NewName” on

sheet2 of the active workbook on the range “E5:J10”

Sub AddNamedrange()

 Names.Add Name:="NewName", RefersTo:="=Sheet2!E5:J10"

End Sub

4 0207 987 3777 www.MicrosoftTraining.net

Alternatively it is possible to set a name by defining the name property of the

range object.

Sub AddRangeNameProperty()

 Range("A1:V3").Name = "RangeName"

End Sub

Working with Collections
A class is a blueprint for an object, and individual objects are “instances” of a class.

A collection is simply a group of individual objects with which we are going to

work.

For example in the code above we have defined a class called customers, and

code to generate a single instance of that class; i.e. one individual customer. In

practice we will be working with more than one customer and we will wish to

define them as being part of a collection object so we can process them using

some of the methods and properties of the collection object.

The Collection Object

The collection object has a number of properties and methods associated with it;

of which the most important are:

Method/Property Description

Count A method that returns the number of objects in the

collection

Add A method that adds an item to the collection

www.MicrosoftTraining.net 0207 987 3777 5

Remove Removes an item to a collection

Items(index) Refers to an individual item in the collection either by

its index number (position in collection) or by its name

Explicit creation of a collection

We can create a collection in a class module. This simply requires us to define the

collections objects and methods in the normal way

Option Explicit

Private FCustomers As New Collection

Public Function add(ByVal value As Customer)

 Call FCustomers.add(value, value.Name)

End Function

Public Property Get Count() As Long

 Count = FCustomers.Count

End Property

Public Property Get Items() As Collection

 Set Items = FCustomers

End Property

6 0207 987 3777 www.MicrosoftTraining.net

Public Property Get Item(ByVal value As Variant) As Customer

 Set Item = FCustomers(value)

End Property

Public Sub Remove(ByVal value As Variant)

 Call FCustomers.Remove(value)

End Sub

The above code simply defines a collection called customers (class module name).

The variable FCustomers is defined as a collection object. The various methods

and properties are then defined. For example, the remove method is defined in a

procedure that uses the remove method of the collection object to remove a

specified item from the collection.

Referring to a collection in a standard module

Once defined, a collection can be employed in the same way as any other

collection.

Dim aCustomer As Customer

Dim theCustomers As New Customers

 Set aCustomer = New Customer

 aCustomer.Name = "Kur Avon"

 aCustomer.MainAddress = "132 Long Lane"

 Call theCustomers.add(aCustomer)

 Set aCustomer = New Customer

 aCustomer.Name = "Fred Perry"

 aCustomer.MainAddress = "133 Long Lane"

www.MicrosoftTraining.net 0207 987 3777 7

 Call theCustomers.add(aCustomer)

 Set aCustomer = New Customer

 aCustomer.Name = "Jo Bloggs"

 aCustomer.MainAddress = "134 Long Lane"

 Call theCustomers.add(aCustomer)

For Each aCustomer In theCustomers.Items

 Sheets(1).Range("A1").Select

 ActiveCell.value = aCustomer.Name

 ActiveCell.Offset(0, 1).value = aCustomer.MainAddress

 ActiveCell.Offset(1, 0).Select

 Next aCustomer

The above code simply defines a “customer” variable and a “customers” variable;

assigns three objects to the collection and then writes the name and address to

a worksheet in the current workbook, using a “FOR EACH” loop.

Using the Collections Object Directly

It is possible to create a collection using the VBA collection class directly. The

code below creates a collection called employees and assigns three instances of

the custom object employees to it.

Sub TestEmployeesCollection()

 Dim anEmployee As Employee

 Dim i As Long

 Set anEmployee = New Employee

 anEmployee.Name = "Stephen Williams"

 anEmployee.Rate = 500

8 0207 987 3777 www.MicrosoftTraining.net

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Kur Avon"

 anEmployee.Rate = 50

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Bill Bailey"

 anEmployee.Rate = 250

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Alexander Armstrong"

 anEmployee.Rate = 250

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 For Each anEmployee In Employees

 MsgBox anEmployee.Name & " Earns " & "£" &

anEmployee.GetGrossWeeklyPay()

 Next anEmployee

End Sub

www.MicrosoftTraining.net 0207 987 3777 9

Unit 2 - Charts

In this unit you will learn how to:

 Create charts using VBA

Creating charts from worksheet data
Charts are created by working with the chart object. The key elements to a chart

are:

 Data source

 Type

 Location

These are controlled by the following properties.

Key Properties and methods of the chart object
Properties/Methods Description

SetSourceData This specifies the data that will be modelled in the

chart. Includes 2 key arguments; Source which

specifies the data range, and PlotBy which

determines if the series is in rows or columns

ChartType Select one from a list of chart types recognized by

Excel

Location Specifies if the chart is to be embedded into a

worksheet or whether it will occupy a sheet of its own

Add Adds a new chart to the active workbook

The following code example creates a simple chart object and then sets the above

properties.

Public Sub EmbeddedChart()

 Set aChart = Charts.Add

10 0207 987 3777 www.MicrosoftTraining.net

 Set aChart = aChart.Location(Where:=xlLocationAsObject, Name:="Sheet1")

 With aChart

 .ChartType = xl3DBarClustered

 .SetSourceData Source:=Sheets("Sheet1").Range("B2:E6"), PlotBy:=xlRows

 .HasTitle = True

 . ChartTitle.Text = "Sales Summary"

 End With

End Sub

Creating Charts from Arrays
In the example above, the chart’s source data was to be found in sheet1 range

B2:E6 of the active workbook. It is however possible to set a chart’s source data

to the contents of an array.

Public Sub ChartFromArray()

 Dim SourceRange As Range

 Dim aWorksheet As Worksheet

 Dim aWorkBook As Workbook

 Dim aChart As Chart

 Dim aNewSeries As Series

 Dim intCount As Integer

 Dim SalesArray As Variant

 Dim MonthArray As Variant

 MonthArray = Array("Jan", "Feb", "March")

www.MicrosoftTraining.net 0207 987 3777 11

 Set SourceRange = Sheets("Source Sheet").Range("B2:E6")

 Set aWorkBook = Workbooks.Add

 Set aWorksheet = aWorkBook.Worksheets(1)

 Set aChart = aWorkBook.Charts.Add

 With aChart

 For intCount = 1 To 4

 'create a new series

 Set aNewSeries = .SeriesCollection.NewSeries

 SalesArray = SourceRange.Offset(intCount, 1).Resize(1, 3).Value

 aNewSeries.Values = SalesArray

 aNewSeries.XValues = MonthArray

 Next intCount

 .HasLegend = True

 .HasTitle = True

 .ChartTitle.Text = "First Quarter Sales"

 End With

The above code creates a new workbook, adds a chart and then populates the

chart with data taken from a source workbook.

Within the For...Next loop, four new series are created. At each loop a new series

is created with the “NewSeries” method. The appropriate row’s data is then

assigned directly to the variant “SalesArray”, and sales array is assigned to the

values property of the new series.

12 0207 987 3777 www.MicrosoftTraining.net

Unit 3 - PivotTable Object

In this unit you will learn how to:

 Use VBA to create PivotTables

Understanding PivotTables

A pivot table is a table that can be used to summarize data from a worksheet or

an external source such as a database.

A Pivot table can only be created using the Pivot table wizard.

Creating A PivotTable

The wizard makes the creation of the pivot table quite easy. By following a series

of prompts the wizard takes over and creates the pivot table for you. To do this:

Insert Ribbon > PivotTable Button (Far left)

 Procedure

 Select Where the data

is that you want to

analyze

 Select where you

want to create the

report

 Click OK.

www.MicrosoftTraining.net 0207 987 3777 13

 Drag the field buttons

to the desired page,

row, column and data

fields.

Using the PivotTable Wizard Method

The PivotTable Wizard method of the Worksheet object can be used to create a

pivot table in code without displaying the wizard.

The PivotTable Wizard method has many arguments. The main ones are

described below:

Argument Definition

SourceType The source of the PivotTable data. The SourceData

argument must also be specified when using this.

SourceData A range object that specifies the data for the

PivotTable.

TableDestination A range object indicating where the table will be

placed.

TableName The name by which the table can be referred.

14 0207 987 3777 www.MicrosoftTraining.net

An example of the PivotTable Wizard method is shown below:

Sub MakePivot ()

Dim DataRange As Range

Dim Destination As Range

Dim PvtTable As PivotTable

Set Destination = Worksheets("Sales Summary").Range("A12")

Set DataRange = Range("A9", Range("J9").End(xlDown))

ActiveSheet.PivotTableWizard SourceType:=xlDatabase, _

SourceData:=DataRange, TableDestination:=Destination, TableName:="SalesInfo"

End Sub

This code runs the PivotTable wizard, capturing the data in the current worksheet

then placing a pivot table in the worksheet called “Sales Summary”. In this

instance the PivotTable contains no data, because the row, column and data fields

haven’t been assigned.

www.MicrosoftTraining.net 0207 987 3777 15

Using PivotFields

Once a PivotTable is created pivot fields must be assigned. The PivotFields

collection is a member of the PivotTable object containing the data in the data

source with each Pivot Field getting its name from the column header. PivotFields

can be set to page, row, column and data fields in the PivotTable.

In the Sales – April 2004 the fields are: Sales Date, Make, Model, Type, Colour,

Year, VIN Number, Dealer Price, Selling Price, Salesperson.

The table below lists the PivotTable destinations for PivotFields.

Destination Constant

Row Field

xlRowField

Column Field xlColumnField

Page Field xlPageField

Data Field xlDataField

To Hide A Field xlHidden

The following syntax shows how a PivotField is defined by setting its Orientation

property to the desired destination column:

.PivotTables(Index).PivotFields(Index).Orientation = Destination

16 0207 987 3777 www.MicrosoftTraining.net

.PivotTables(“SalesInfo”).PivotFields(“Salesperson”).Orientation = xlPageField

PivotTables(“SalesInfo”).PivotFields(“Colour”).Orientation = xlRowField

To optimize the setting of the Pivot Table orientation use the With Statement:

Set PvtTable = Sheets(“Sales Summary”).PivotTables(“SalesInfo”)

With PvtTable

 .PivotFields(“Salesperson”).Orientation = xlPageField

 .PivotFields(“Year”).Orientation = xlRowField

 .PivotFields(“Make”).Orientation = xlColumnField

 .PivotFields(“Selling Price”).Orientation = xlDataField

End With

www.MicrosoftTraining.net 0207 987 3777 17

Unit 4 - Working with Arrays

In this unit you will learn how to:

 Understand an array

 Create one dimension and multiple dimension arrays

 Work with lbound & ubound

What is an Array
An array can be regarded as a variable that can hold a collection of values which

can be referenced by an index number. Typically an array is defined in the same

way as a variable, with the difference that it is followed by brackets.

The following code contains an array that can hold 5 integers

Dim intArray(1 to 5) as integer

When creating an array it is necessary to specify its size (the number of elements

that it can hold) and the number of dimensions contained by the array.

Array Sizes
An array’s size can be specified either when it is declared or later during the code’s

execution. The former case creates a static array, the later a dynamic array.

A static array is an array that is sized in the Dim statement that declares the array.

Dim StatArray(1 To 100) As string

You can’t change the size or data type of a static array.

A dynamic array is an array that is not sized in the Dim statement. Instead, it is

sized later with the ReDim statement.

Dim DynArray() As string

ReDim DynamicArray(1 To 100)

You can change the size of a dynamic array, but not the data type.

One Dimensional Arrays
The arrays considered so far are one dimensional, in that they have a simple row

of variables. For example an array defined as;

18 0207 987 3777 www.MicrosoftTraining.net

Dim strArray(1-5) as string

Could be visualized as

1 2 3 4 5

with 5 spaces which can contain string values.

When the array is populated, we could visualize the following

Bill Ben Fre

d

Mary Jane

In the first view, the numbers are the array’s index numbers which are used to

identify a particular element. The second refers to the values actually contained

in the array.

To allocate a value to a location in array, it is simply necessary to reference the

index number and set that equal to the value required. For example:

strArray(3) = “Fred”

…would be the code used to set the value of the array’s third element to the string

value “Fred”.

Arrays with Multiple Dimensions
Arrays can have more than one index number; that is they can have more than

one dimension. Typically we will use 2 dimensional arrays which are in effect

virtual tables.

The following code

Dim strArray(1 to 5,1 to 3)

….creates the following

1,1 1,2 1,3

2,1 2,2 2,3

www.MicrosoftTraining.net 0207 987 3777 19

3,1 3,2 3,3

4,1 4,2 4,3

5,1 5,2 5,3

This is an array with 5 rows and 3 columns. If we wanted to set the value of the

last element in the array to the word “hello”, we would need;

StrArray(5,3) = “Hello”

While single and two dimensional arrays are the most commonly used; arrays can

have up to 60 dimensions.

Thus the following

StrArray(1 to 3,1 to 9,1 to 6)

….defines a virtual cube containing 162 spaces.

Once we exceed 3 dimensions, mathematically we are working with hypercubes

which are hard to visualize! Fortunately, it is unlikely that you will ever need them.

A word about index numbers
Thus far we have explicitly specified the index numbers in an array as follows;

Dim intArray(1 to 4) as integer

…..which specifies that the first location is numbered 1 and the last 4.

We could however define the array as follows

Dim intArray(4) as integer

Here we have again defined an array with 4 locations. However, under normal

circumstances the index numbers would be;

With the first index number starting zero.

0 1 2 3

20 0207 987 3777 www.MicrosoftTraining.net

This can be changed by using the Option Base statement in the declarations

section of the module containing the code

Option Base 1

…..sets the lower bound index of any array to 1.

It is however better practice to explicitly specify the lower bound index number

in the array’s declaration.

Ubound and Lbound
The Ubound and Lbound functions return the highest and lowest index numbers

in the array. They are useful when cycling through the values contained in an

array.

The following code uses the Lbound and Ubound functions to view each item

contained in an array

Public Sub Array1()

 Dim data(1 To 10) As Integer

 Dim I As Integer

 For I = LBound(data) To UBound(data)

 MsgBox data(I)

 Next I

End Sub

Saving arrays in names
As with any variable the array has a limited lifetime which terminates at the latest

when the application ceases to run. However, in the same way that we can give a

range a name that is saved within the workbook we can also name an array.

This array will then be saved with the workbook and can then be available when

the workbook opens.

www.MicrosoftTraining.net 0207 987 3777 21

The following code creates an array, populates it and then saves it to a name;

using the add method of the names collection.

This technique allows large volumes of data to be stored in a workbook, outside

of the standard worksheets.

Public Sub ArrayToName()

 Dim MyArray(1 To 200, 1 To 3) As Integer

 Dim I As Integer

 Dim J As Integer

 For I = 1 To 200

 For J = 1 To 3

 MyArray(I, J) = I + J

 Next J

 Next I

 Names.Add Name:="MyName", RefersTo:=MyArray

End Sub

22 0207 987 3777 www.MicrosoftTraining.net

Unit 5 - Triggers and Events

In this unit you will learn how to:

 Create workbook events

 Create worksheet event

 Work with timed events

An event is “something that happens” to an object, and usually occurs when an

object undergoes a change of state.

For instance when a workbook is selected, its status changes from deactivated to

activated and the Activate event fires. Code can be embedded in special event

procedures and will run whenever certain events occur.

The screenshot below shows how to select an object and then access the relevant

event

www.MicrosoftTraining.net 0207 987 3777 23

Workbook Events
Events for the Workbook object occurs when the workbook is changed or a

sheet in the workbook is changed.

Select the desired project in the Project-window of the VBE and activate the

object ThisWorkbook by double-clicking it. Any event procedures in the

workbook will now be displayed in the Code-window on the right side of the

screen. You can create a new event Procedure by selecting Workbook in the

Object dropdown, and then select an event in the Procedure dropdown.

The main workbook events are:

 Activate (When the workbook is selected. Also fires when the workbook

opens, after the open event)

 AddinInstall

 AddinUninstall

 BeforeClose (Can be used to “clean up” workbook before it closes. Also

you can run the save method at this point to ensure the file always

automatically saves any changes)

 BeforePrint

 BeforeSave

 Deactivate (Fires when another workbook or application is selected)

 NewSheet (when a new sheet is created)

 Open

 SheetActivate

 SheetBeforeDoubleClick

 SheetBeforeRightClick

 SheetCalculate

 SheetChange

 SheetDeactivate

 SheetSelectionChange

 WindowActivate

 WindowDeactivate

 WindowResize

24 0207 987 3777 www.MicrosoftTraining.net

Worksheet Events

In the worksheet dropdown you can access the following events

 Activate

 BeforeDoubleClick

 BeforeRightClick

 Calculate (Runs whenever a formula’s dependent cell value is changed, or

when F9 is pressed.)

 Change

 Deactivate

 SelectionChange

Timer Controlled Macro
Timer Event example code:

Private Sub Workbook_Open()

'Application.OnTime Now() + TimeSerial(0, 0, 10), "TimeMe"

Application.Wait Now() + TimeValue("00:00:05")

MsgBox "Hi its me"

End Sub

If using the OnTime you need to specify another routine for it to go to.

Use this line if you want to run a macro at a preset time e.g. here set for 9.17pm

Application.OnTime TimeSerial(21, 17, 10), "TimeMe"

Use either TimeSerial or TimeValue.

www.MicrosoftTraining.net 0207 987 3777 25

Unit 6 - Working with Text Files

In this unit you will learn how to:

 Import a text file

 Understand FileStream

For people that deal with databases and large systems, the text file is the common

‘language’ that they can all converse in. This could be in a variety of formats, such

as: TXT, PRN, CSV, TSV and many more. It is beneficial to be aware of routines to

handle importing and exporting text files as VBA can use them as an input /

output between systems.

Importing a Text File
This procedure allows you to import data from a delimited text file. Each line in

the text file is written to one row in the worksheet. Items in the text file are

separated into separate columns on the worksheet row based on the character

you specify.

Minimum code required to import a text delimited file:

With

ActiveSheet.QueryTables.Add(Connection:="TEXT;C:\VBA\EmployeeData.txt",

Destination:=Range("A1"))

 .TextFileStartRow = 1

 .TextFileCommaDelimiter = True

 .Refresh BackgroundQuery:=False

 End With

26 0207 987 3777 www.MicrosoftTraining.net

FileStream
Use the FileStream class to read from, write to, open, and close files on a file

system, and to manipulate other file-related operating system handles, including

pipes, standard input, and standard output.

FileStream buffers input and output for better performance.

FileStream can be used across different VBA models (Excel, Word, Outlook).

FileStream needs to be loaded from the VBA Library before use.

 To reference this file, load the Visual Basic Editor (ALT-F11)

 Select Tools - References from the drop-down menu

 A listbox of available references will be displayed

 Tick the check-box next to 'Microsoft Scripting Runtime'

 The full name and path of the scrrun.dll file will be displayed below the listbox

 Click on the OK button

The two most useful lines of code are

FileSystemObject.OpenTextFile

FileSystemObject.CreateTextFile

To read in and create a text file, respectively.

www.MicrosoftTraining.net 0207 987 3777 27

Unit 7 - Working with Procedures and Parameters

In this unit you will learn how to:

 Passing arguments

 Use optional arguments

 Passing arguments ByVal & ByRef

Procedure Arguments
There are two types of procedure; sub procedures and function procedures. The

difference between them is that function procedures return values, and sub

procedures do not. Both sub procedures and function procedures accept

arguments. An argument is simply a piece of information that the procedure is to

process.

Passing Arguments
The arguments of a procedure are defined within the brackets after the

procedure’s name. They are then processed within the procedure.

The following function accepts 2 string variables and then concatenates them

together.

Function StringJoiner(Name1 As String, Name2 As String) As String

 StringJoiner = Name1 & Name2

End Function

It is then called from the following sub procedure, with the two arguments

defined.

Sub RunStringJoiner()

28 0207 987 3777 www.MicrosoftTraining.net

 Dim strResult As String

 strResult = StringJoiner("Stephen ", "Williams")

 MsgBox strResult

End Sub

Optional Arguments
You can specify that some or all of the arguments in a procedure are optional.

This procedure has an optional argument strMessage

Sub OptArgument(Optional strMessage As String)

 If strMessage <> "" Then

 MsgBox strMessage

 Else

 MsgBox "I have nothing to say"

 End If

End Sub

www.MicrosoftTraining.net 0207 987 3777 29

It is called from the following procedure. The first line returns a message box with

the word argument value hello as the message. The second has no value for the

argument and returns the message “I have nothing to say”.

Sub CallOptArg()

 Call OptArgument("Hello")

 Call OptArgument

End Sub

Default Values
It is common to include a default value with an optional argument. This will be

the value of the argument if it is omitted when the procedure is called.

Sub OptArgument(Optional strMessage As String = “I have nothing to say”)

 MsgBox strMessage

End Sub

The above procedure has exactly the same results as the previous example, but is

clearly a lot simpler to code and understand.

30 0207 987 3777 www.MicrosoftTraining.net

Passing arguments by value and reference
By default, arguments in VBA are passed by reference. This means that if you pass

a variable as an argument from one procedure to another then the called

procedure is working with the exact same copy of the variable as the calling

procedure. When you pass a variable by value, then the calling procedure makes

a copy of the variable, hands that to the called procedure; but retains the original

itself. As a result, the variable in the calling procedure is unaffected by the changes

made in the calling procedure.

The following procedure sets a variable intVar to the value of 10 and then passes

it to another procedure by reference. This procedure adds 10 to it and hands it

back, where the final value of 20 is displayed in a message box.

Sub PassByRef()

 Dim intVar As Integer

 intVar = 10

 Call RecByRef(intVar)

 MsgBox intVar

End Sub

www.MicrosoftTraining.net 0207 987 3777 31

Sub RecByRef(IntArgument As Integer)

 IntArgument = IntArgument + 10

 End Sub

In the following example the intVar is passed by value to the sub RecByRef. Here

a copy of the variable is processed, which means it is not passed back to the

calling procedure. As a result the message box returns the value 10

Sub PassByVal()

 Dim intVar As Integer

 intVar = 10

 Call RecByVal(intVar)

 MsgBox intVar

End Sub

Sub RecByVal(ByVal intArgument As Integer)

 intArgument = intArgument + 10

End Sub

The key is the argument in the called procedure

Sub RecByVal(ByVal intArgument As Integer)

The byVal keyword specifies that the argument has been passed by value; that is

that it is a copy and that the original value will be retained after the called

procedure has completed.

32 0207 987 3777 www.MicrosoftTraining.net

Unit 8 - Active X Data Objects

In this unit you will learn how to:

 Understand ADO (Active X Data Object)

 Use then connection object and the recordset object

 Create a universal data link tool

Microsoft's ActiveX Data Objects (ADO) is a set of objects for accessing data

sources. It provides a layer between VBA and the OLE DB, for example an Access

Database.

ADO allows a developer to write programs that access data without knowing how

the database is implemented. You must be aware of your database for connection

only. No knowledge of SQL is required to access a database when using ADO,

although you can use ADO to execute arbitrary SQL commands.

Key Objects
There are two key objects that concern us; the Connection Object and the

Recordset Object.

The Connection Object is the link between your Excel Spreadsheet and the

database itself. The link must be opened initially, it must be closed when you're

finished, and it has varying qualities. These qualities are the properties and

methods of the Connection Object.

The Recordset is the object you're going to be doing almost all of your work with.

A RecordSet object is a container for what is called a Cursor. A cursor is a

temporary table, which is constructed by performing a query on a table in a

database. It doesn't exist in a file; it exists in memory, but other than that, it has

all the characteristics of a database table. It has rows (records) and columns

(fields), and the rows and columns have properties of their own.

The Connection Object

The connection object has a child object known as the connection string. The

connection string provides the path to the database, together with additional

information concerning the database’s properties.

www.MicrosoftTraining.net 0207 987 3777 33

The following code creates a constant to take the required connection string. It

then creates an ADODB connection object and then sets that object’s connection

string to the defined constant. The connection is then opened, using the

connection string’s open method.

Const ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=D:\Documents and Settings\Storage\Work\Access\Simulated

Server\Northwind 2003v2.mdb;Persist Security Info=False"

Dim Connection As ADODB.Connection

Connection.ConnectionString = ConnString

Connection.Open

The RecordSet Object

The RecordSet Object is used to represent a table or query in the database

defined by the connection string. An object variable is defined as an ADODB

RecordSet and is then set to the required table using an SQL statement.

The Recordset can then be manipulated with the following methods and

properties.

MoveFirst Move to first record

MoveNext Move to next Record

MovePrevious Move to previous Record

MoveLast Move to last Record

Edit Edit current record

AddNew Add new record

Update Update changes

Fields() Used to specify a particular field in the current record either

by index number or name

EOF Specifies whether the cursor is at the end of the file

BOF Specifies that the cursor is at the beginning of the file

34 0207 987 3777 www.MicrosoftTraining.net

The following code follows on from that shown for the connection object it opens

the customer’s table as a RecordSet, moves to the first record and then cycles

through to the end of the file, writing the customer name to a cell in the active

worksheet.

Const SQL = "SELECT * FROM customers"

Set rstCustomer = Connection.Execute(SQL)

With rstCustomer

 .MoveFirst

 Sheets(1).Range(“a1”).select

 Do While Not .EOF

 Activecell.value = .Fields("CompanyName")

 .MoveNext

 Activecell.Offset(1,0).Select

 Loop

End with

A word about the connection string
The connection string can often be difficult to code correctly. Fortunately there

exists a simple technique to define the string, which involves creating a GUI tool

that allows you to browse for the source file and then automatically calculate the

connection string.

Create an empty text file and save it with the extension .udl. It will then open as a

dialog box.

www.MicrosoftTraining.net 0207 987 3777 35

 On the provider tab select the appropriate OLE DB Provider.

36 0207 987 3777 www.MicrosoftTraining.net

On the connection tab, click the browse button and select the required database

Then close the dialog box and open the file using notepad. Within the file you

will see the connection string clearly labeled.

www.MicrosoftTraining.net 0207 987 3777 37

You can the copy and paste the code into your procedure.

38 0207 987 3777 www.MicrosoftTraining.net

Unit 9 - Creating Add-Ins

When we create a customised function, that function will typically only be

available within that workbook. To make the function available to all workbooks,

we must create and then open an Add-In file.

1. Create all the required functions in a separate workbook. This workbook

should contain no data as it is sole purpose is to hold the functions

2. The file should then be saved and the file type should be Excel AddIn

3. It is then necessary to install the Addin file.

4. Click on the office button/file tab, select Excel options and click on the

AddIns command. Alongside manage click “Go” and then select the

required AddIn

www.MicrosoftTraining.net 0207 987 3777 39

VBA Password Protection

When we write VBA code it is often desirable to have the VBA Macro code not

visible to end-users. This is to protect your intellectual property and/or stop users

messing about with your code.

To protect your code, from within the Visual Basic Editor

 Open the Tools Menu

 Select VBA Project Properties

The Project Properties dialog box

appears.

 Click the Protection page tab

 Check "Lock project for

viewing"

 Enter your password and again

to confirm it.

 Click OK

After doing this you must Save and Close the Workbook for the protection to

take effect.

The safest password to use is one that uses a combination of upper, lower case

text and numbers. Be sure not to forget it.

40 0207 987 3777 www.MicrosoftTraining.net

Unit 9 - About Macro Security

In this unit you will learn how to:

 Set security level

 Add a password to the code

In Excel, you can set a macro security level to control what happens when you

open a workbook that contains a macro.

Macro security settings and their effects

The following list summarizes the various macro security settings. Under all

settings, if antivirus software that works with 2007 Microsoft Office system is

installed and the workbook contains macros, the workbook is scanned for known

viruses before it is opened.

 Disable all macros without notification Click this option if you don't trust

macros. All macros in documents and security alerts about macros are disabled.

If there are documents that contain unsigned macros that you do trust, you can

put those documents into a trusted location.

 Disable all macros with notification This is the default setting. Click this option

if you want macros to be disabled, but you want to get security alerts if there are

macros present. This way, you can choose when to enable those macros on a case

by case basis.

 Disable all macros except digitally signed macros This setting is the same as

the Disable all macros with notification option, except that if the macro is digitally

signed by a trusted publisher, the macro can run if you have already trusted the

publisher. If you have not trusted the publisher, you are notified. That way, you

can choose to enable those signed macros or trust the publisher. All unsigned

macros are disabled without notification.

 Enable all macros (not recommended, potentially dangerous code can run) Click

this option to allow all macros to run. Using this setting makes your computer

http://office.microsoft.com/en-gb/excel-help/redir/HA010031999.aspx?CTT=5&origin=HP010096919

www.MicrosoftTraining.net 0207 987 3777 41

vulnerable to potentially malicious code and is not recommended.

 Trust access to the VBA project object model This setting is for developers

and is used to deliberately lock out or allow programmatic access to the VBA

object model from any Automation client. In other words, it provides a security

option for code that is written to automate an Office program and

programmatically manipulate the Microsoft Visual Basic for Applications (VBA)

environment and object model.

Change Macro Security Settings

You can change macro security settings in the Trust Center, unless a system

administrator in your organization has changed the default settings to prevent

you from changing the settings.

1. On the Developer tab, in the Code group, click Macro Security.

2. In the Macro Settings category, under Macro Settings, click the option that

you want.

 NOTE Any changes that you make in the Macro Settings category in Excel apply

only to Excel and do not affect any other Microsoft Office program.

Appendix

Class Modules

What can be done with Class Modules?
Class modules allow you to create and use your own object types in your

application. This implies the following;

 You can easily write code that works with any workbooks that do not have any

code.

 Two or more procedures for the event of a command button can be

consolidated in one

 The code is easy to use by concealing logic and data.

42 0207 987 3777 www.MicrosoftTraining.net

Why use Class Modules?
Classes make your code:

 Development simpler

 More manageable

 Self-documenting

 Easier to maintain

What is a Class?
A Class is a Blueprint or template of an Object.

In Excel VBA, an Object can mean Workbooks, Worksheets, User forms and

Controls etc. Normally an Object has Properties or Methods. A Property stands

for Data that describes the Object, and a Method stands for an action that can be

ordered to the object.

Properties and Methods of the Object depend on the kind of Object.

For Example;

Worksheet (1).Select

... selects the first worksheet in the workbook. Select is a method of the worksheet

object.

How Does a Class Module Work?
A Class Module is a place where a Class is defined. The procedures in a class

module are never called directly from other modules like the procedures placed

in the standard modules.

In the view of a standard module, the class module doesn't exist.

The thing that exists in the view of a standard module is an instance of the object

generated by the class defined by the class module. The methods and procedures

of the class are defined within the class module.

www.MicrosoftTraining.net 0207 987 3777 43

Key Elements in a class module
The class module defines all the properties and methods associated with the class.

In the example below the “customer” class has two properties associated

properties; Name and Main Address.

These are defined by the Property Get and Property let Procedures (see below).

The Customer ID is calculated by taking the leftmost 3 characters from the

customer’s Name and concatenating that with the 5 leftmost characters from the

main Address. This is the result of the method GetCustomerID, and is defined in

a function in the class module

Property Get and Let Procedures
A property is implemented using a property let and a property get procedure.

When someone sets a value for a property the property let procedure is called

with the new value. When someone reads the value of a property the property

get procedure is called to return the value. The value is stored as an internal

private variable.

Read only properties can be created by implementing a property get procedure

without a corresponding property let procedure.

44 0207 987 3777 www.MicrosoftTraining.net

Example of a Class Module

Option Explicit

Private strName As String

Private strAddress As String

Public Property Get Name() As String

 Name = strName

End Property

Public Property Let Name(ByVal value As String)

 strName = value

End Property

Public Function GetCustomerID()

 GetCustomerID = Left(strName, 3) & Left(strAddress, 5)

End Function

Public Property Get MainAddress() As String

 MainAddress = strAddress

End Property

Public Property Let MainAddress(ByVal value As String)

 strAddress = value

End Property

www.MicrosoftTraining.net 0207 987 3777 45

Referring to user defined Objects in Code
This simply involves creating an instance of the Class in Code and then

manipulating it is the way you would any other object.

The following code would be placed in a standard module, and refers to the

customer object defined previously.

Option Explicit

Dim aCustomer As Customer (1)

Sub TestCustomer()

 Set aCustomer = New Customer (2)

 aCustomer.Name = "Evil Genius" (3)

 aCustomer.MainAddress = "123 the Hollowed out Volcano" (4)

 MsgBox "Company ID is " & vbCrLf & aCustomer.GetCustomerID() (5)

End Sub

Line 1 defines an object variable as a Customer variable, and line 2 sets it as a new

customer object. Line 3 assigns a value to its name property and line 4 a value to

its Main Address property.

Line 4 uses the GetCustomerID Method to generate the CustomerID value and

returns it in a message box.

Using IntelliSense™
Microsoft IntelliSense is a convenient way to access descriptions of objects and

methods. It speeds up software development by reducing the amount of name

memorization needed and keyboard input required. Once a class is defined in a

class module, Intellisense will automatically provide drop down lists showing the

methods and properties of objects the names of which have been entered into

the VBE.

46 0207 987 3777 www.MicrosoftTraining.net

Programming Techniques

Writing effective code is both a science and an art. There are obviously rules of

logic and syntax that define what will and will not work. Outside of this however,

there are usually a multiplicity of ways to achieve a particular end, and as your

experience grows you will find a style that suits you. However there are various

conventions and best practises that when followed will make your code simpler

and more efficient.

Best Practice for Excel Programming
When writing VBA code for Excel, it is best whenever possible to make use of

Excel’s built in functionality rather than trying to replicate it in your code. For

example, if you were working with a list and wanted to place subtotal within it at

the end of various groups, you could:

1. Write code that inserts a blank row at the end of each group and then insert

a function to total the rows above it.

2. Alternatively, you could use the subtotalling method of the current region to

accomplish the same end.

www.MicrosoftTraining.net 0207 987 3777 47

The later technique is the more efficient as it is briefer, easier to understand and

executes more quickly. There are also associated methods for removing the

subtotals.

Sub SubTotals()

 Range("A6").CurrentRegion.Sort key1:=Range("a7:a41"), Header:=xlYes

 Range("A6").CurrentRegion.Subtotal Groupby:=1, Function:=xlSum, _

TotalList:=Array(6, 11, 16)

End Sub

The code above sorts a database, and then inserts subtotals based on the sorted

column.

	Welcome to your Excel VBA Advanced training course
	Unit 1 - Working with Ranges
	What is a Range?
	Range Property of the Application
	Cells Property
	The SpecialCells Method
	Naming Ranges
	Working with Collections
	The Collection Object
	Explicit creation of a collection
	Referring to a collection in a standard module
	Using the Collections Object Directly

	Unit 2 - Charts
	Creating charts from worksheet data
	Key Properties and methods of the chart object
	Creating Charts from Arrays

	Unit 3 - PivotTable Object
	Understanding PivotTables
	Creating A PivotTable
	Using the PivotTable Wizard Method
	Using PivotFields

	Unit 4 - Working with Arrays
	What is an Array
	Array Sizes
	One Dimensional Arrays
	Arrays with Multiple Dimensions
	A word about index numbers
	Ubound and Lbound
	Saving arrays in names

	Unit 5 - Triggers and Events
	Workbook Events
	Worksheet Events
	Timer Controlled Macro

	Unit 6 - Working with Text Files
	Importing a Text File
	FileStream

	Unit 7 - Working with Procedures and Parameters
	Procedure Arguments
	Passing Arguments
	Optional Arguments
	Default Values
	Passing arguments by value and reference

	Unit 8 - Active X Data Objects
	Key Objects
	The Connection Object
	The RecordSet Object

	A word about the connection string

	Unit 9 - Creating Add-Ins
	VBA Password Protection
	Unit 9 - About Macro Security
	Macro security settings and their effects
	Change Macro Security Settings

	Appendix
	Class Modules
	What can be done with Class Modules?
	Why use Class Modules?
	What is a Class?
	How Does a Class Module Work?
	Key Elements in a class module
	Property Get and Let Procedures
	Example of a Class Module

	Referring to user defined Objects in Code
	Using IntelliSense™

	Programming Techniques
	Best Practice for Excel Programming

