
 

 

MicrosoftTraining.net 

 

Excel VBA 

Advanced 

 

Courses never 

Cancelled 

24 Months 

Online Support 

 

12+ Months 

Schedule 

UK Wide 

Delivery 

 

 

  

Accredited Learning Provider 
Certified Silver Partner 



 

 

1 

 

Welcome to your Excel Intermediate training course 

1. The range object 

2. Chart VBA 

3. PivotTable VBA 

4. Store data in Arrays 

5. Execute code by events 

6. Working with text files 

7. Active X data object 

 

 

 



 

  

Contents 

 

Unit 1 - Working with Ranges ........................................................................................................1 

What is a Range? ...................................................................................................................................................... 1 

Range Property of the Application ..................................................................................................................... 1 

CurrentRegion Property ......................................................................................................................................... 2 

Cells Property ............................................................................................................................................................. 3 

Union Property .......................................................................................................................................................... 4 

Naming Ranges ......................................................................................................................................................... 8 

Working with Collections ..................................................................................................................................... 10 

The Collection Object ....................................................................................................................................... 10 

Explicit creation of a collection ..................................................................................................................... 10 

Referring to a collection in a standard module ....................................................................................... 12 

Using the Collections Object Directly ......................................................................................................... 14 

Unit 2 - Charts ............................................................................................................................... 16 

Creating charts from worksheet data .............................................................................................................. 16 

Key Properties and methods of the chart object ......................................................................................... 16 

Creating Charts from Arrays ............................................................................................................................... 18 

Unit 3 - PivotTable Object ............................................................................................................ 21 

Understanding PivotTables ................................................................................................................................. 21 

Creating A PivotTable ........................................................................................................................................... 21 

Procedure ...................................................................................................................................... 23 

Using the PivotTable Wizard Method .............................................................................................................. 24 

Using PivotFields .................................................................................................................................................... 26 

Unit 4 - Working with Arrays ....................................................................................................... 29 

What is an Array...................................................................................................................................................... 29 

Array Sizes................................................................................................................................................................. 29 



 

4 0207 987 3777  www.MicrosoftTraining.net 

 

One Dimensional Arrays....................................................................................................................................... 31 

Arrays with Multiple Dimensions ...................................................................................................................... 33 

A word about index numbers ............................................................................................................................. 35 

Ubound and Lbound ............................................................................................................................................. 37 

Saving arrays in names ......................................................................................................................................... 37 

Variant Arrays .......................................................................................................................................................... 39 

Array Examples ........................................................................................................................................................ 39 

Unit 5 - Triggers and Events ......................................................................................................... 42 

Workbook Events ................................................................................................................................................... 44 

Workbook event examples.................................................................................................................................. 45 

Worksheet Events ................................................................................................................................................... 48 

Worksheet Events examples ............................................................................................................................... 48 

Timer Controlled Macro ....................................................................................................................................... 50 

Unit 6 - Working with Text Files .................................................................................................. 50 

Importing a Text File ............................................................................................................................................. 51 

FileStream ................................................................................................................................................................. 51 

Unit 7 - Working with Procedures and Parameters ................................................................... 53 

Procedure Arguments ........................................................................................................................................... 53 

Passing Arguments ................................................................................................................................................ 53 

Optional Arguments .............................................................................................................................................. 55 

Default Values ......................................................................................................................................................... 57 

Passing arguments by value and reference ................................................................................................... 57 

Unit 8 - Active X Data Objects ...................................................................................................... 61 

Key Objects............................................................................................................................................................... 61 

The Connection Object .................................................................................................................................... 62 

The RecordSet Object ...................................................................................................................................... 63 

A word about the connection string ................................................................................................................ 65 



 

  

Unit 9 - Creating Add-Ins ............................................................................................................. 68 

VBA Password Protection ............................................................................................................ 69 

Unit 9 - About Macro Security ..................................................................................................... 70 

Macro security settings and their effects ........................................................................................................ 70 

Change Macro Security Settings ....................................................................................................................... 72 

Appendix ....................................................................................................................................... 73 

Class Modules ................................................................................................................................ 73 

What can be done with Class Modules? ......................................................................................................... 73 

Why use Class Modules? ...................................................................................................................................... 73 

What is a Class? ....................................................................................................................................................... 73 

How Does a Class Module Work? ..................................................................................................................... 75 

Key Elements in a class module ......................................................................................................................... 75 

Property Get and Let Procedures ...................................................................................................................... 75 

Example of a Class Module ............................................................................................................................ 77 

Referring to user defined Objects in Code..................................................................................................... 79 

Using IntelliSense™ ................................................................................................................................................ 80 

Programming Techniques ............................................................................................................ 81 

Best Practice for Excel Programming ............................................................................................................... 81 

 





 

www.MicrosoftTraining.net 0207 987 3777 1 

 

 

Unit 1 - Working with Ranges 

In this unit you will learn how to: 

 Understand the range object 

 Use the Special cell method 

 Work with collections 

 

What is a Range? 
When we refer to a range in Excel we mean either a singular cell, a rectangular 

block of cells, or a union of many rectangular blocks. In VBA Range is an object 

with its own properties and methods. Just to complicate things range can also be 

a property of the application object, the worksheet object and indeed the range 

object, where it refers to a specified range object. 

 

Range Property of the Application 
You can use the range property of the application to refer to a range object on 

the active worksheet. 

 

For example; 

Range(“B2”) 

Range(“A1:B7”) 

Range(“A1:B3,E1:O9”) 

 

Note the last example refers to a union, or non-contiguous range. 

 



 

2 0207 987 3777  www.MicrosoftTraining.net 

 

CurrentRegion Property 
If you click inside a table in a worksheet and press CTRL Shift * while you are 

recording a macro you will in the Visual Basic Editor find the code: 

Range(“a1”).CurrentRegion.Select (May be not Range(“a1”) but the cell reference 

you selected before you pressed the shortcut keys). 

The CurrentRegion object is very useful in VBA. Especially if you want to create 

dynamic codes you do not need to update when your source data change. 

Range(“a1”).CurrentRegion.Rows.Count will count how many rows you have in a 

table which have A1 as a part of the table.  

Range(“a1”).CurrentRegion.Columns.Count will count how many columns you 

have in a table which have A1 as a part of the table.  

This is very useful in a lot of codes. If you create a For Next loop you want to loop 

through a table and the number of records can change you can create the loop 

like this: 

For i=1 To Range(“a1”).CurrentRegion.Rows.Count 

…… 

Next i 

The above example is not the best approach to create a dynamic code. The will 

ask Excel to count the number of records for each time the loop is running and if 

the loop needs to run through 12000 record the code: 

Range(“a1”).CurrentRegion.Rows.Count 

Will have to count to 12000 12000 times and of course this will add time to have 

fast the code is running. 

A much better approach is to store the number of records in a data variable and 

then use the data variable in the loop. Then Excel only need to count one time. 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 3 

 

 

Dim lCounter as Long 

lCounter= Range(“a1”).CurrentRegion.Rows.Count 

For i=1 To lCounter 

…… 

Next i 

 

 

 

Cells Property 
 The Cells Property of the range object can be used to specify the 

parameters in the range property to define a range object. 

 

For example the following refers to range A1:E5 

 

Range (Cells(1,1), Cells (5,5)) 

 

The cells property can also be used to refer to particular cells within a range; or a 

range within a range. 

 

The following refers to cell F9 

 

Range (“D10:G20”).Cells (0,3) 

 



 

4 0207 987 3777  www.MicrosoftTraining.net 

 

You can also shortcut this reference thus 

 

Range (“D10:G20”) (0,3) 

 

 

Union Property 
The Union property can make a union of any combination of reference properties: 

Union(Range(“A1:A10”),Rows(“3:5”),Columns(“K:M”),Cells(2,2)).Select 

The code above will select the range A1:A10 and the row 3 to 5 and column K to 

M and the cell B2. This of course can be very useful in VBA. 

                   



 

www.MicrosoftTraining.net 0207 987 3777 5 

 

The SpecialCells Method 

The SpecialCells method allows certain types of cell to be identified within a 

range. 

 

It has the following syntax: 

 

SpecialCells(Type, Value) 

 

The type argument specifies the cells to be included 

  

xlCellTypeAllFormatConditions  Cells of any format 

xlCellTypeAllValidation  Cells having validation criteria 

xlCellTypeBlanks  Empty cells 

xlCellTypeComments  Cells containing notes 

xlCellTypeConstants  Cells containing constants 

xlCellTypeFormulas  Cells containing formulas 

xlCellTypeLastCell  The last cell in the used range 

xlCellTypeSameFormatConditions  Cells having the same format 

xlCellTypeSameValidation  Cells having the same validation criteria 

xlCellTypeVisible  All visible cells 

xlCellTypeFormulas.  Cells containing formulas 

xlCellTypeLastCell.  The last cell in the used range 

xlCellTypeSameFormatConditions.  Cells having the same format 

xlCellTypeSameValidation.  Cells having the same validation criteria 



 

6 0207 987 3777  www.MicrosoftTraining.net 

 

xlCellTypeVisible.  All visible cells 

 

This argument is used to determine which types of cells to include in the result 

 

xlErrors 

xlLogical 

xlNumbers 

xlTextValues 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 7 

 

The following code will delete all the numbers in a worksheet, leaving only text 

data and formulae in place  

Sub DeleteNumbersInworksheet() 

 

    Cells.SpecialCells(xlCellTypeConstants, xlNumbers).ClearContents 

 

End Sub 

The following code will delete all blank rows in a list 

 Sub DeleteBlankRows() 

 

   Range("a:a").SpecialCells(xlCellTypeBlanks).EntireRow.Delete 

 

End Sub 

The following code will loop through all numbers in a worksheet and add 10% to 

the value if it is greater than 300. 

 Sub LoopAllNumbers() 

 Dim Cell as Range 

 For Each cell in Cells. SpecialCells(xlCellTypeConstants, xlNumbers) 

  If Cell>300 then 

   Cell=Cell*1.1 

  End If 

 Next Cell 

 

End Sub 



 

8 0207 987 3777  www.MicrosoftTraining.net 

 

The following code will embold all text in the worksheet. 

 Sub AllText() 

  

 Cells. SpecialCells(xlCellTypeConstants, xlTextValues).Font.Bold=True 

   

End Sub 

 

 

 

Naming Ranges 
One of the most useful techniques in Excel is to name ranges. A named range can 

simplify code as it is possible to refer to the name and not the cell references 

 

To create a named range we use the add method of the workbook’s names 

collection. The following code creates a named range called “NewName” on 

sheet2 of the active workbook on the range “E5:J10” 

 

Sub AddNamedrange() 

 

    Names.Add Name:="NewName", RefersTo:="=Sheet2!$E$5:$J$10"   

 

 

End Sub 

 



 

www.MicrosoftTraining.net 0207 987 3777 9 

 

Alternatively it is possible to set a name by defining the name property of the 

range object. 

 

Sub AddRangeNameProperty() 

 

 

    Range("A1:V3").Name = "RangeName" 

 

 

End Sub 



 

10 0207 987 3777  www.MicrosoftTraining.net 

 

Working with Collections 
A class is a blueprint for an object, and individual objects are “instances” of a 

class. A collection is simply a group of individual objects with which we are going 

to work.  

 

For example in the code above we have defined a class called customers, and 

code to generate a single instance of that class; i.e. one individual customer. In 

practice we will be working with more than one customer and we will wish to 

define them as being part of a collection object so we can process them using 

some of the methods and properties of the collection object. 

 

The Collection Object 

The collection object has a number of properties and methods associated with it; 

of which the most important are: 

 

Method/Property Description 

Count A method that returns the number of objects in the 

collection 

Add A method that adds an item to the collection 

Remove Removes an item to a collection 

Items(index) Refers to an individual item in the collection either by its 

index number (position in collection) or by its name 

 

Explicit creation of a collection 

We can create a collection in a class module. This simply requires us to define the 

collections objects and methods in the normal way 

 



 

www.MicrosoftTraining.net 0207 987 3777 11 

 

Option Explicit 

Private FCustomers As New Collection 

 

Public Function add(ByVal value As Customer) 

    Call FCustomers.add(value, value.Name) 

End Function 

 

Public Property Get Count() As Long 

    Count = FCustomers.Count 

End Property 

 

Public Property Get Items() As Collection 

    Set Items = FCustomers 

End Property 

  



 

12 0207 987 3777  www.MicrosoftTraining.net 

 

 

Public Property Get Item(ByVal value As Variant) As Customer 

    Set Item = FCustomers(value) 

End Property 

 

Public Sub Remove(ByVal value As Variant) 

    Call FCustomers.Remove(value) 

End Sub 

 

The above code simply defines a collection called customers (class module name). 

The variable FCustomers is defined as a collection object. The various methods 

and properties are then defined. For example, the remove method is defined in a 

procedure that uses the remove method of the collection object to remove a 

specified item from the collection. 

 

Referring to a collection in a standard module 

Once defined, a collection can be employed in the same way as any other 

collection. 

 

Dim aCustomer As Customer 

Dim theCustomers As New Customers 

    Set aCustomer = New Customer     

    aCustomer.Name = "Kur Avon" 

    aCustomer.MainAddress = "132 Long Lane"     

    Call theCustomers.add(aCustomer)     



 

www.MicrosoftTraining.net 0207 987 3777 13 

 

     

    Set aCustomer = New Customer     

    aCustomer.Name = "Fred Perry" 

    aCustomer.MainAddress = "133 Long Lane"     

    Call theCustomers.add(aCustomer)     

     

    Set aCustomer = New Customer     

    aCustomer.Name = "Jo Bloggs" 

    aCustomer.MainAddress = "134 Long Lane"     

    Call theCustomers.add(aCustomer)     

     

For Each aCustomer In theCustomers.Items     

        Sheets(1).Range("A1").Select         

        ActiveCell.value = aCustomer.Name 

        ActiveCell.Offset(0, 1).value = aCustomer.MainAddress         

        ActiveCell.Offset(1, 0).Select 

 Next aCustomer 

 

The above code simply defines a “customer” variable and a “customers” variable; 

assigns three objects to the collection and then writes the name and address to a 

worksheet in the current workbook, using a “FOR EACH” loop. 

  



 

14 0207 987 3777  www.MicrosoftTraining.net 

 

Using the Collections Object Directly 

 

It is possible to create a collection using the VBA collection class directly. The 

code below creates a collection called employees and assigns three instances of 

the custom object employees to it. 

 

Sub TestEmployeesCollection() 

 

    Dim anEmployee As Employee 

    Dim i As Long     

     

    Set anEmployee = New Employee 

    anEmployee.Name = "Stephen Williams" 

    anEmployee.Rate = 500 

    anEmployee.HoursPerWeek = 50 

    Call Employees.add(anEmployee, anEmployee.Name) 

     

    Set anEmployee = New Employee 

    anEmployee.Name = "Kur Avon" 

    anEmployee.Rate = 50 

    anEmployee.HoursPerWeek = 50 

    Call Employees.add(anEmployee, anEmployee.Name) 

     

    Set anEmployee = New Employee 



 

www.MicrosoftTraining.net 0207 987 3777 15 

 

    anEmployee.Name = "Bill Bailey" 

    anEmployee.Rate = 250 

    anEmployee.HoursPerWeek = 50 

    Call Employees.add(anEmployee, anEmployee.Name) 

     

    Set anEmployee = New Employee 

    anEmployee.Name = "Alexander Armstrong" 

    anEmployee.Rate = 250 

    anEmployee.HoursPerWeek = 50 

    Call Employees.add(anEmployee, anEmployee.Name)     

     

    For Each anEmployee In Employees 

     

        MsgBox anEmployee.Name & " Earns " & "£" & 

anEmployee.GetGrossWeeklyPay() 

     

    Next anEmployee     

     

 

End Sub 



 

16 0207 987 3777  www.MicrosoftTraining.net 

 

Unit 2 - Charts 

In this unit you will learn how to: 

 Create charts using VBA 

 

Creating charts from worksheet data 
Charts are created by working with the chart object. The key elements to a chart 

are: 

 

 Data source 

 Type 

 Location 

 

These are controlled by the following properties. 

 

Key Properties and methods of the chart object 
Properties/Methods Description 

SetSourceData This specifies the data that will be modelled in the 

chart. Includes 2 key arguments; Source which 

specifies the data range, and PlotBy which determines 

if the series is in rows or columns 

ChartType Select one from a list of chart types recognized by 

Excel 

Location Specifies if the chart is to be embedded into a 

worksheet or whether it will occupy a sheet of its own 

Add Adds a new chart to the active workbook 



 

www.MicrosoftTraining.net 0207 987 3777 17 

 

 

The following code example creates a simple chart object and then sets the above 

properties. 

 

Public Sub EmbeddedChart()  

 

    Set aChart = Charts.Add 

    Set aChart = aChart.Location(Where:=xlLocationAsObject, Name:="Sheet1") 

        With aChart 

          .ChartType = xl3DBarClustered 

         .SetSourceData Source:=Sheets("Sheet1").Range("B2:E6"), PlotBy:=xlRows 

         .HasTitle = True 

        . ChartTitle.Text = "Sales Summary" 

        End With 

 

End Sub 

  



 

18 0207 987 3777  www.MicrosoftTraining.net 

 

 

Creating Charts from Arrays 
In the example above, the chart’s source data was to be found in sheet1 range 

B2:E6 of the active workbook. It is however possible to set a chart’s source data to 

the contents of an array. 

 

Public Sub ChartFromArray() 

 

    Dim SourceRange As Range 

    Dim aWorksheet As Worksheet 

    Dim aWorkBook As Workbook 

    Dim aChart As Chart 

    Dim aNewSeries As Series 

    Dim intCount As Integer 

    Dim SalesArray As Variant 

    Dim MonthArray As Variant     

     

    MonthArray = Array("Jan", "Feb", "March") 

     

    Set SourceRange = Sheets("Source Sheet").Range("B2:E6") 

     

    Set aWorkBook = Workbooks.Add 

    Set aWorksheet = aWorkBook.Worksheets(1) 

    Set aChart = aWorkBook.Charts.Add 



 

www.MicrosoftTraining.net 0207 987 3777 19 

 

     

    With aChart 

     

        For intCount = 1 To 4 

         

        'create a new series 

         

        Set aNewSeries = .SeriesCollection.NewSeries 

        SalesArray = SourceRange.Offset(intCount, 1).Resize(1, 3).Value 

        aNewSeries.Values = SalesArray 

        aNewSeries.XValues = MonthArray         

               

        Next intCount 

         

        .HasLegend = True 

        .HasTitle = True 

         

        .ChartTitle.Text = "First Quarter Sales"        

      

     

    End With 

 

 



 

20 0207 987 3777  www.MicrosoftTraining.net 

 

The above code creates a new workbook, adds a chart and then populates the 

chart with data taken from a source workbook.   

 

Within the For...Next loop, four new series are created. At each loop a new series 

is created with the “NewSeries” method. The appropriate row’s data is then 

assigned directly to the variant “SalesArray”, and sales array is assigned to the 

values property of the new series. 

 

 

 

       



 

www.MicrosoftTraining.net 0207 987 3777 21 

 

Unit 3 - PivotTable Object  

In this unit you will learn how to: 

 Use VBA to create PivotTables 

 

Understanding PivotTables 

A pivot table is a table that can be used to summarize data from a worksheet or 

an external source such as a database. 

A Pivot table can only be created using the Pivot table wizard. 

 

Creating A PivotTable 

The wizard makes the creation of the pivot table quite easy.  By following a series 

of prompts the wizard takes over and creates the pivot table for you.  To do this: 

 

 

Insert Ribbon > PivotTable Button (Far left) 

  

 

  



 

22 0207 987 3777  www.MicrosoftTraining.net 

 



 

www.MicrosoftTraining.net 0207 987 3777 23 

 

Procedure 

 

 

 Select Where the 

data is that you 

want to analyze 

 

 Select where you  

want to create the 

report 

 

 Click OK. 

 

  

 

 Drag the field buttons 

to the desired page, 

row, column and data 

fields. 

 

  

  



 

24 0207 987 3777  www.MicrosoftTraining.net 

 

Using the PivotTable Wizard Method 

The PivotTable Wizard method of the Worksheet object can be used to create a 

pivot table in code without displaying the wizard. 

 

The PivotTable Wizard method has many arguments.  The main ones are 

described below: 

Argument Definition 

SourceType The source of the PivotTable data. The SourceData 

argument must also be specified when using this. 

 

SourceData A range object that specifies the data for the 

PivotTable. 

 

TableDestination A range object indicating where the table will be 

placed. 

 

TableName The name by which the table can be referred. 

 

 

An example of the PivotTable Wizard method is shown below: 

 

Sub MakePivot () 

 

Dim DataRange As Range 

Dim Destination As Range 

Dim PvtTable As PivotTable 



 

www.MicrosoftTraining.net 0207 987 3777 25 

 

 

Set Destination = Worksheets("Sales Summary").Range("A12") 

Set DataRange = Range("A9", Range("J9").End(xlDown)) 

 

ActiveSheet.PivotTableWizard SourceType:=xlDatabase, _ 

SourceData:=DataRange, TableDestination:=Destination, TableName:="SalesInfo" 

 

End Sub 

 

 

This code runs the PivotTable wizard, capturing the data in the current worksheet 

then placing a pivot table in the worksheet called “Sales Summary”.  In this 

instance the PivotTable contains no data, because the row, column and data fields 

haven’t been assigned. 



 

26 0207 987 3777  www.MicrosoftTraining.net 

 

Using PivotFields 

Once a PivotTable is created pivot fields must be assigned.  The PivotFields 

collection is a member of the PivotTable object containing the data in the data 

source with each Pivot Field getting its name from the column header.  

PivotFields can be set to page, row, column and data fields in the PivotTable. 

 

In the Sales – April 2004 the fields are: Sales Date, Make, Model, Type, Colour, 

Year, VIN Number, Dealer Price, Selling Price, Salesperson. 

 

The table below lists the PivotTable destinations for PivotFields. 

 

Destination Constant 

 

Row Field 

 

xlRowField 

 

Column Field xlColumnField 

 

Page Field xlPageField 

 

Data Field xlDataField 

 

To Hide A Field xlHidden 

 

 

The following syntax shows how a PivotField is defined by setting its Orientation 

property to the desired destination column: 



 

www.MicrosoftTraining.net 0207 987 3777 27 

 

 

 

.PivotTables(Index).PivotFields(Index).Orientation = Destination 

 

.PivotTables(“SalesInfo”).PivotFields(“Salesperson”).Orientation = xlPageField 

 

PivotTables(“SalesInfo”).PivotFields(“Colour”).Orientation = xlRowField 

 

 

To optimize the setting of the Pivot Table orientation use the With Statement: 

 

 

Set PvtTable = Sheets(“Sales Summary”).PivotTables(“SalesInfo”) 

 

With PvtTable 

 

          .PivotFields(“Salesperson”).Orientation = xlPageField 

          .PivotFields(“Year”).Orientation = xlRowField 

          .PivotFields(“Make”).Orientation = xlColumnField 

          .PivotFields(“Selling Price”).Orientation = xlDataField 

 

End With 

 

 

 



 

28 0207 987 3777  www.MicrosoftTraining.net 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 29 

 

Unit 4 - Working with Arrays 

In this unit you will learn how to: 

 Understand an array 

 Create one dimension and multiple dimension arrays 

 Work with lbound & ubound 

 

What is an Array 
An array can be regarded as a variable that can hold a collection of values which 

can be referenced by an index number.  Typically an array is defined in the same 

way as a variable, with the difference that it is followed by brackets. 

 

The following code contains an array that can hold 5 integers 

Dim intArray(1 to 5) as integer 

 

When creating an array it is necessary to specify its size (the number of elements 

that it can hold) and the number of dimensions contained by the array. 

 

Array Sizes 
An array’s size can be specified either when it is declared or later during the 

code’s execution. The former case creates a static array, the later a dynamic array. 

 

A static array is an array that is sized in the Dim statement that declares the array. 

 

Dim StatArray(1 To 100) As string 

 



 

30 0207 987 3777  www.MicrosoftTraining.net 

 

You can’t change the size or data type of a static array.  

 

A dynamic array is an array that is not sized in the Dim statement. Instead, it is 

sized later with the ReDim statement.  

 

Dim DynArray() As string 

ReDim DynamicArray(1 To 100) 

 

You can change the size of a dynamic array, but not the data type.  



 

www.MicrosoftTraining.net 0207 987 3777 31 

 

One Dimensional Arrays 
The arrays considered so far are one dimensional, in that they have a simple row 

of variables. For example an array defined as; 

 

Dim strArray(1-5) as string 

 

Could be visualized as 

1 2 3 4 5 

with 5 spaces which can contain string values.  

 

When the array is populated, we could visualize the following 

Bill Ben Fre

d 

Mary Jane 

 

In the first view, the numbers are the array’s index numbers which are used to 

identify a particular element. The second refers to the values actually contained in 

the array.  

 

To allocate a value to a location in array, it is simply necessary to reference the 

index number and set that equal to the value required. For example: 

 

strArray(3) = “Fred” 

 

…would be the code used to set the value of the array’s third element to the 

string value “Fred”. 



 

32 0207 987 3777  www.MicrosoftTraining.net 

 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 33 

 

Arrays with Multiple Dimensions 
Arrays can have more than one index number; that is they can have more than 

one dimension. Typically we will use 2 dimensional arrays which are in effect 

virtual tables. 

 

The following code  

 

Dim strArray(1 to 5,1 to 3) 

 

….creates the following 

 

1,1 1,2 1,3 

2,1 2,2 2,3 

3,1 3,2 3,3 

4,1 4,2 4,3 

5,1 5,2 5,3 

 

 

This is an array with 5 rows and 3 columns. If we wanted to set the value of the 

last element in the array to the word “hello”, we would need; 

 

StrArray(5,3) = “Hello” 

 

While single and two dimensional arrays are the most commonly used; arrays can 

have up to 60 dimensions.  



 

34 0207 987 3777  www.MicrosoftTraining.net 

 

 

Thus the following  

 

StrArray(1 to 3,1 to 9,1 to 6) 

 

….defines a virtual cube containing 162 spaces. 

 

Once we exceed 3 dimensions, mathematically we are working with hypercubes 

which are hard to visualize! Fortunately, it is unlikely that you will ever need them. 



 

www.MicrosoftTraining.net 0207 987 3777 35 

 

A word about index numbers 
Thus far we have explicitly specified the index numbers in an array as follows; 

 

Dim intArray(1 to 4) as integer 

 

…..which specifies that the first location is numbered 1 and the last 4.  

 

We could however define the array as follows 

 

Dim intArray(4) as integer 

 

Here we have again defined an array with 4 locations. However, under normal 

circumstances the index numbers would be; 

 

 

With the first index number starting zero.  

 

This can be changed by using the Option Base statement in the declarations 

section of the module containing the code 

 

Option Base 1 

 

…..sets the lower bound index of any array to 1.  

 

0 1 2 3 



 

36 0207 987 3777  www.MicrosoftTraining.net 

 

It is however better practice to explicitly specify the lower bound index number in 

the array’s declaration. 



 

www.MicrosoftTraining.net 0207 987 3777 37 

 

Ubound and Lbound 
The Ubound and Lbound functions return the highest and lowest index numbers 

in the array. They are useful when cycling through the values contained in an 

array. 

 

The following code uses the Lbound and Ubound functions to view each item 

contained in an array 

 

Public Sub Array1() 

    Dim data(1 To 10) As Integer 

    Dim I As Integer     

    For I = LBound(data) To UBound(data)     

        MsgBox data(I)         

    Next I         

End Sub 

 

Saving arrays in names 
As with any variable the array has a limited lifetime which terminates at the latest 

when the application ceases to run. However, in the same way that we can give a 

range a name that is saved within the workbook we can also name an array.  

 

This array will then be saved with the workbook and can then be available when 

the workbook opens. 

 

The following code creates an array, populates it and then saves it to a name; 

using the add method of the names collection. 



 

38 0207 987 3777  www.MicrosoftTraining.net 

 

 

This technique allows large volumes of data to be stored in a workbook, outside 

of the standard worksheets.  

 

Public Sub ArrayToName() 

    Dim MyArray(1 To 200, 1 To 3) As Integer     

    Dim I As Integer 

    Dim J As Integer     

    For I = 1 To 200     

        For J = 1 To 3         

            MyArray(I, J) = I + J         

        Next J     

    Next I     

    Names.Add Name:="MyName", RefersTo:=MyArray 

End Sub 

 

 

 

 

 

 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 39 

 

Variant Arrays 
 

Earlier in this chapter it is told that you will need to define the size of the array. 

Well it is not always necessary. You can create an array like this: 

Dim MyArray as Variant 

This can be very convenient but it can only be declared as a Variant. Variant is not 

the most efficient data type to use. Variants use more memory and will slow 

down the speed of the code.  

Anyway this type of arrays can be very useful. It is very easy to fill the array: 

MyArray=range(“A1”).Currentregion 

The above will take all records from any size of list starting from A1 and put the 

data in an array. 

Array Examples 
In the table below the staff members are going to have a raise of 20%. A loop 

could loop through the values in the worksheet but if it is a huge amount of 

records an array will speed up the process.  

 



 

40 0207 987 3777  www.MicrosoftTraining.net 

 

The code below will take the salaries in the F column and put them in the 

computer’s memory in the MyArray array. The For Next loop will loop through 

each salary in the array and add 20%. The line: 

Range("G6").Resize(UBound(MyArray, 1), UBound(MyArray, 2)) = MyArray 

adds the content from the array in column G. 

Sub Add20PercentToValues() 

Dim MyArray As Variant 

Dim lCounter As Long 

 

MyArray = Range(Range("F6"), Range("F6").End(xlDown)) 

 

For lCounter = LBound(MyArray, 1) To UBound(MyArray, 1) 

MyArray(lCounter, 1) = MyArray(lCounter, 1) * 1.2 

Next 

 

Range("G6").Resize(UBound(MyArray, 1), UBound(MyArray, 2)) = MyArray 

End Sub 

 

The code below will add all the data from the whole table to the computer’s 

memory. The IF decision code will test which department the staff members are 

working in and give them a raise based on the department. 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 41 

 

Sub CalcNewSalary() 

Dim MyArray As Variant 

Dim lCounter As Long 

 

MyArray = Range(Range("a6"), Range("a6").End(xlDown).End(xlToRight)) 

 

For lCounter = LBound(MyArray, 1) To UBound(MyArray, 1) 

 

If MyArray(lCounter, 4) = "Sales" Then 

MyArray(lCounter, 6) = MyArray(lCounter, 6) * 1.07 

ElseIf MyArray(lCounter, 4) = "Administration" Then 

MyArray(lCounter, 6) = MyArray(lCounter, 6) * 1.03 

ElseIf MyArray(lCounter, 4) = "Production" Then 

MyArray(lCounter, 6) = MyArray(lCounter, 6) * 1.05 

ElseIf MyArray(lCounter, 4) = "Development" Then 

MyArray(lCounter, 6) = MyArray(lCounter, 6) * 1.08 

End If 

Cells(5 + lCounter, 7) = MyArray(lCounter, 6) 

Next lCounter 

 

End Sub   



 

42 0207 987 3777  www.MicrosoftTraining.net 

 

Unit 5 - Triggers and Events 

In this unit you will learn how to: 

 Create workbook events 

 Create worksheet event 

 Work with timed events 

 

An event is “something that happens” to an object, and usually occurs when an 

object undergoes a change of state.  

 

For instance when a workbook is selected, its status changes from deactivated to 

activated and the Activate event fires. Code can be embedded in special event 

procedures and will run whenever certain events occur.  

 

The screenshot below shows how to select an object and then access the relevant 

event 

 



 

www.MicrosoftTraining.net 0207 987 3777 43 

 

 

 



 

44 0207 987 3777  www.MicrosoftTraining.net 

 

Workbook Events 
 

Events for the Workbook object occurs when the workbook is changed or a sheet 

in the workbook is changed. 

Select the desired project in the Project-window of the VBE and activate the 

object  ThisWorkbook by double-clicking it. Any event procedures in the 

workbook will now be displayed in the Code-window on the right side of the 

screen. You can create a new event Procedure by selecting Workbook in the 

Object dropdown, and then select an event in the Procedure dropdown. 

 

The main workbook events are: 

 

 Activate (When the workbook is selected. Also fires when the workbook 

opens, after the open event) 

 AddinInstall 

 AddinUninstall 

 BeforeClose (Can be used to “clean up” workbook before it closes. Also 

you can run the save method at this point to ensure the file always 

automatically saves any changes) 

 BeforePrint 

 BeforeSave 

 Deactivate (Fires when another workbook or application is selected) 

 NewSheet (when a new sheet is created) 

 Open 

 SheetActivate 

 SheetBeforeDoubleClick 



 

www.MicrosoftTraining.net 0207 987 3777 45 

 

 SheetBeforeRightClick 

 SheetCalculate 

 SheetChange 

 SheetDeactivate 

 SheetSelectionChange 

 WindowActivate 

 WindowDeactivate 

 WindowResize 

 

Workbook event examples 
The workbook event below will prompt the user when someone try to print 

something in the workbook and ask for a password. If the right password is 

entered in the input box prints can be made. If a wrong password is entered the 

print event will be cancelled and nothing can be printed. 

Private Sub Workbook_BeforePrint(Cancel As Boolean) 

Dim PassWord As String 

PassWord = InputBox("Enter the Password to Print", "Print Password") 

If PassWord = "YouCanPrint" Then 

Cancel = False 

Else 

Cancel = True 

End If 

End Sub 

 



 

46 0207 987 3777  www.MicrosoftTraining.net 

 

The open workbook event below will every time the workbook opens show a 

message : 

 

 

And another message 

 

And then open the save as dialog box 

 



 

www.MicrosoftTraining.net 0207 987 3777 47 

 

Private Sub Workbook_Open() 

MsgBox "Good morning this " & Format(Date, "dddd dd mm yyyy") 

MsgBox "Please save the work as a new name" 

Application.Dialogs(xlDialogSaveAs).Show 

End Sub 

The Workbook new sheet event below will make sure that no one can add new 

sheets to the workbook. 

Private Sub Workbook_NewSheet(ByVal Sh As Object) 

Application.DisplayAlerts = False 

MsgBox "you are not allowed to add more sheets to this workbook" 

Sh.Delete 

Application.DisplayAlerts = True 

End Sub 

The before close event below will remind the user to save the workbook with a 

new name and if the user hasn’t cancel close. 

Private Sub Workbook_BeforeClose(Cancel As Boolean) 

Dim ans As String 

ans = MsgBox("Did you save the work with a new name?", vbYesNo) 

Cancel = (ans = vbNo) 

ActiveWorkbook.Save 

End Sub 



 

48 0207 987 3777  www.MicrosoftTraining.net 

 

Worksheet Events 
 

In the worksheet dropdown you can access the following events 

 

 Activate 

 BeforeDoubleClick 

 BeforeRightClick 

 Calculate (Runs whenever a formula’s dependent cell value is changed, or 

when F9 is pressed.) 

 Change 

 Deactivate 

 SelectionChange 

Worksheet Events examples 
 

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean) 

Static counter As Integer 

If counter = 1 Then 

Sheets(Sheets.Count).Activate 

counter = counter + 1 

Else 

Worksheets.Add 

counter = 1 

End If 

End Sub 



 

www.MicrosoftTraining.net 0207 987 3777 49 

 

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean) 

 

    If Not Intersect(Target, Range("a1:b4")) Is Nothing Then 

        Cancel = True 

Application.Dialogs(xlDialogConditionalFormatting).Show 

Else 

Cancel = False 

End If 

 

End Sub 

 

Private Sub Worksheet_Change(ByVal Target As Range) 

If Target.Address = "$A$1" Then 

If Target.Value > 80 Then MsgBox "Goal completed" 

End If 

End Sub 

 

Private Sub Worksheet_SelectionChange(ByVal Target As Range) 

Cells.Interior.Pattern = xlNone 

Selection.EntireRow.Interior.Color = vbRed 

Selection.EntireColumn.Interior.Color = vbRed 

 

End Sub 



 

50 0207 987 3777  www.MicrosoftTraining.net 

 

 

Timer Controlled Macro 
Timer Event example code: 

 

Private Sub Workbook_Open() 

'Application.OnTime Now() + TimeSerial(0, 0, 10), "TimeMe" 

Application.Wait Now() + TimeValue("00:00:05") 

MsgBox "Hi its me" 

End Sub 

 

If using the OnTime you need to specify another routine for it to go to. 

 

Use this line if you want to run a macro at a preset time e.g. here set for 9.17pm 

 

Application.OnTime TimeSerial(21, 17, 10), "TimeMe" 

 

Use either TimeSerial or TimeValue. 

 

Unit 6 - Working with Text Files 

In this unit you will learn how to: 

 Import a text file 

 Understand FileStream 

 



 

www.MicrosoftTraining.net 0207 987 3777 51 

 

For people that deal with databases and large systems, the text file is the 

common ‘language’ that they can all converse in. This could be in a variety of 

formats, such as: TXT, PRN, CSV, TSV and many more. It is beneficial to be aware 

of routines to handle importing and exporting text files as VBA can use them as 

an input / output between systems. 

Importing a Text File 
 

This procedure allows you to import data from a delimited text file. Each line in 

the text file is written to one row in the worksheet. Items in the text file are 

separated into separate columns on the worksheet row based on the character 

you specify. 

 

Minimum code required to import a text delimited file: 

 

With ActiveSheet.QueryTables.Add(Connection:="TEXT;C:\VBA\EmployeeData.txt", 

Destination:=Range("A1")) 

       .TextFileStartRow = 1 

       .TextFileCommaDelimiter = True 

       .Refresh BackgroundQuery:=False 

    End With 

 

 

FileStream 
Use the FileStream class to read from, write to, open, and close files on a file 

system, and to manipulate other file-related operating system handles, including 

pipes, standard input, and standard output.  

 

FileStream buffers input and output for better performance. 

FileStream can be used across different VBA models (Excel, Word, Outlook). 



 

52 0207 987 3777  www.MicrosoftTraining.net 

 

FileStream needs to be loaded from the VBA Library before use. 

 

 To reference this file, load the Visual Basic Editor (ALT-F11) 

 Select Tools - References from the drop-down menu 

 A listbox of available references will be displayed 

 Tick the check-box next to 'Microsoft Scripting Runtime' 

 The full name and path of the scrrun.dll file will be displayed below the listbox 

 Click on the OK button 

 

The two most useful lines of code are 

 

FileSystemObject.OpenTextFile 

FileSystemObject.CreateTextFile 

 

To read in and create a text file, respectively. 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 53 

 

Unit 7 - Working with Procedures and Parameters 

In this unit you will learn how to: 

 Passing arguments 

 Use optional arguments 

 Passing arguments ByVal & ByRef 

 

Procedure Arguments 
There are two types of procedure; sub procedures and function procedures. The 

difference between them is that function procedures return values, and sub 

procedures do not. Both sub procedures and function procedures accept 

arguments. An argument is simply a piece of information that the procedure is to 

process. 

 

Passing Arguments 
The arguments of a procedure are defined within the brackets after the 

procedure’s name. They are then processed within the procedure. 

 

The following function accepts 2 string variables and then concatenates them 

together. 

 

Function StringJoiner(Name1 As String, Name2 As String) As String 

 

    StringJoiner = Name1 & Name2 

     

End Function 



 

54 0207 987 3777  www.MicrosoftTraining.net 

 

 

It is then called from the following sub procedure, with the two arguments 

defined. 

 

Sub RunStringJoiner() 

 

    Dim strResult As String 

     

    strResult = StringJoiner("Stephen ", "Williams") 

     

    MsgBox strResult     

 

End Sub 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 55 

 

Optional Arguments 
You can specify that some or all of the arguments in a procedure are optional. 

 

This procedure has an optional argument strMessage 

 

Sub OptArgument(Optional strMessage As String) 

 

    If strMessage <> "" Then 

     

        MsgBox strMessage 

         

    Else 

     

        MsgBox "I have nothing to say" 

         

    End If 

 

End Sub 

 

It is called from the following procedure. The first line returns a message box with 

the word argument value hello as the message. The second has no value for the 

argument and returns the message “I have nothing to say”. 

 

Sub CallOptArg() 



 

56 0207 987 3777  www.MicrosoftTraining.net 

 

 

 

    Call OptArgument("Hello") 

     

    Call OptArgument 

        

 

 

End Sub 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 57 

 

Default Values 
It is common to include a default value with an optional argument. This will be 

the value of the argument if it is omitted when the procedure is called.  

 

Sub OptArgument(Optional strMessage As String =  “I have nothing to say”) 

     

        MsgBox strMessage             

 

End Sub 

 

The above procedure has exactly the same results as the previous example, but is 

clearly a lot simpler to code and understand. 

 

Passing arguments by value and reference 
By default, arguments in VBA are passed by reference. This means that if you pass 

a variable as an argument from one procedure to another then the called 

procedure is working with the exact same copy of the variable as the calling 

procedure. When you pass a variable by value, then the calling procedure makes 

a copy of the variable, hands that to the called procedure; but retains the original 

itself. As a result, the variable in the calling procedure is unaffected by the 

changes made in the calling procedure. 

 

The following procedure sets a variable intVar to the value of 10 and then passes 

it to another procedure by reference. This procedure adds 10 to it and hands it 

back, where the final value of 20 is displayed in a message box. 

 



 

58 0207 987 3777  www.MicrosoftTraining.net 

 

Sub PassByRef() 

 

    Dim intVar As Integer 

     

    intVar = 10 

      

    Call RecByRef(intVar) 

     

    MsgBox intVar 

 

End Sub 

  



 

www.MicrosoftTraining.net 0207 987 3777 59 

 

 

Sub RecByRef(IntArgument As Integer) 

 

    IntArgument = IntArgument + 10     

     

End Sub 

 

 

In the following example the intVar is passed by value to the sub RecByRef. Here 

a copy of the variable is processed, which means it is not passed back to the 

calling procedure. As a result the message box returns the value 10 

 

Sub PassByVal() 

 

    Dim intVar As Integer 

     

    intVar = 10 

      

    Call RecByVal(intVar) 

     

    MsgBox intVar 

 

End Sub 

 



 

60 0207 987 3777  www.MicrosoftTraining.net 

 

 

Sub RecByVal(ByVal intArgument As Integer) 

 

 

    intArgument = intArgument + 10 

     

     

End Sub 

 

The key is the argument in the called procedure 

 

Sub RecByVal(ByVal intArgument As Integer) 

 

The byVal keyword specifies that the argument has been passed by value; that is 

that it is a copy and that the original value will be retained after the called 

procedure has completed. 



 

www.MicrosoftTraining.net 0207 987 3777 61 

 

Unit 8 - Active X Data Objects 

In this unit you will learn how to: 

 Understand ADO (Active X Data Object) 

 Use then connection object and the recordset object 

 Create a universal data link tool  

 

Microsoft's ActiveX Data Objects (ADO) is a set of objects for accessing data 

sources. It provides a layer between VBA and the OLE DB, for example an Access 

Database. 

 

ADO allows a developer to write programs that access data without knowing how 

the database is implemented. You must be aware of your database for connection 

only. No knowledge of SQL is required to access a database when using ADO, 

although you can use ADO to execute arbitrary SQL commands. 

 

Key Objects 
There are two key objects that concern us; the Connection Object and the 

Recordset Object. 

 

The Connection Object is the link between your Excel Spreadsheet and the 

database itself. The link must be opened initially, it must be closed when you're 

finished, and it has varying qualities. These qualities are the properties and 

methods of the Connection Object.  

 

The Recordset is the object you're going to be doing almost all of your work with. 

A RecordSet object is a container for what is called a Cursor. A cursor is a 

temporary table, which is constructed by performing a query on a table in a 



 

62 0207 987 3777  www.MicrosoftTraining.net 

 

database. It doesn't exist in a file; it exists in memory, but other than that, it has all 

the characteristics of a database table. It has rows (records) and columns (fields), 

and the rows and columns have properties of their own.  

 

The Connection Object 

The connection object has a child object known as the connection string. The 

connection string provides the path to the database, together with additional 

information concerning the database’s properties. 

 

The following code creates a constant to take the required connection string. It 

then creates an ADODB connection object and then sets that object’s connection 

string to the defined constant. The connection is then opened, using the 

connection string’s open method. 

 

Const ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data 

Source=D:\Documents and Settings\Storage\Work\Access\Simulated 

Server\Northwind 2003v2.mdb;Persist Security Info=False" 

Dim Connection As ADODB.Connection 

Connection.ConnectionString = ConnString 

Connection.Open 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 63 

 

The RecordSet Object 

The RecordSet Object is used to represent a table or query in the database 

defined by the connection string. An object variable is defined as an ADODB 

RecordSet and is then set to the required table using an SQL statement. 

 

The Recordset can then be manipulated with the following methods and 

properties. 

 

MoveFirst Move to first record 

MoveNext Move to next Record 

MovePrevious Move to previous Record 

MoveLast Move to last Record 

Edit Edit current record 

AddNew Add new record 

Update Update changes 

Fields() Used to specify a particular field in the current record either 

by index number or name 

EOF Specifies whether the cursor is at the end of the file 

BOF Specifies that the cursor is at the beginning of the file 

 

The following code follows on from that shown for the connection object it opens 

the customer’s table as a RecordSet, moves to the first record and then cycles 

through to the end of the file, writing the customer name to a cell in the active 

worksheet. 

 



 

64 0207 987 3777  www.MicrosoftTraining.net 

 

Const SQL = "SELECT * FROM customers" 

Set rstCustomer = Connection.Execute(SQL) 

With rstCustomer     

        .MoveFirst 

 Sheets(1).Range(“a1”).select           

        Do While Not .EOF                     

            Activecell.value = .Fields("CompanyName") 

            .MoveNext 

 Activecell.Offset(1,0).Select 

        Loop 

End with 

 



 

www.MicrosoftTraining.net 0207 987 3777 65 

 

A word about the connection string 
 

The connection string can often be difficult to code correctly. Fortunately there 

exists a simple technique to define the string, which involves creating a GUI tool 

that allows you to browse for the source file and then automatically calculate the 

connection string. 

 

Create an empty text file and save it with the extension .udl. It will then open as a 

dialog box. 

 

 

 

 On the provider tab select the appropriate OLE DB Provider. 



 

66 0207 987 3777  www.MicrosoftTraining.net 

 

On the connection tab, click the browse button and select the required database 

 

 

 

 

 

Then close the dialog box and open the file using notepad. Within the file you will 

see the connection string clearly labeled. 



 

www.MicrosoftTraining.net 0207 987 3777 67 

 

 

 

 

 

You can the copy and paste the code into your procedure. 



 

68 0207 987 3777  www.MicrosoftTraining.net 

 

Unit 9 - Creating Add-Ins 

In this unit you will learn how to: 

 

 

When we create a customised function, that function will typically only be 

available within that workbook. To make the function available to all workbooks, 

we must create and then open an Add-In file. 

 

1. Create all the required functions in a separate workbook. This workbook 

should contain no data as it is sole purpose is to hold the functions 

2. The file should then be saved and the file type should be Excel AddIn 

3. It is then necessary to install the Addin file.  

 

 

4. Click on the office button/file tab, select Excel options and click on the 

AddIns command. Alongside manage click “Go” and then select the 

required AddIn 



 

www.MicrosoftTraining.net 0207 987 3777 69 

 

   

VBA Password Protection 

When we write VBA code it is often desirable to have the VBA Macro code not 

visible to end-users. This is to protect your intellectual property and/or stop users 

messing about with your code. 

 

To protect your code, from within the Visual Basic Editor 

 

 

 Open the Tools Menu 

 

 Select VBA Project Properties 

 

The Project Properties dialog box 

appears. 

 

 Click the Protection page tab 

 



 

70 0207 987 3777  www.MicrosoftTraining.net 

 

 Check "Lock project for 

viewing" 

 

 Enter your password and again 

to confirm it. 

 

 Click OK 

 

After doing this you must Save and Close the Workbook for the protection to 

take effect. 

 

The safest password to use is one that uses a combination of upper, lower case 

text and numbers.  Be sure not to forget it. 

 

 

Unit 9 - About Macro Security 

In this unit you will learn how to: 

 Set security level 

 Add a password to the code 

 

In Excel, you can set a macro security level to control what happens when you 

open a workbook that contains a macro.  

Macro security settings and their effects 

The following list summarizes the various macro security settings. Under all 

settings, if antivirus software that works with 2007 Microsoft Office system is 



 

www.MicrosoftTraining.net 0207 987 3777 71 

 

installed and the workbook contains macros, the workbook is scanned for known 

viruses before it is opened. 

 Disable all macros without notification Click this option if you don't trust 

macros. All macros in documents and security alerts about macros are disabled. If 

there are documents that contain unsigned macros that you do trust, you can put 

those documents into a trusted location.  

 

 Disable all macros with notification This is the default setting. Click this option 

if you want macros to be disabled, but you want to get security alerts if there are 

macros present. This way, you can choose when to enable those macros on a case 

by case basis. 

 

 Disable all macros except digitally signed macros This setting is the same as 

the Disable all macros with notification option, except that if the macro is digitally 

signed by a trusted publisher, the macro can run if you have already trusted the 

publisher. If you have not trusted the publisher, you are notified. That way, you 

can choose to enable those signed macros or trust the publisher. All unsigned 

macros are disabled without notification. 

 

 Enable all macros (not recommended, potentially dangerous code can run) Click 

this option to allow all macros to run. Using this setting makes your computer 

vulnerable to potentially malicious code and is not recommended. 

 

 Trust access to the VBA project object model    This setting is for developers 

and is used to deliberately lock out or allow programmatic access to the VBA 

object model from any Automation client. In other words, it provides a security 

option for code that is written to automate an Office program and 

programmatically manipulate the Microsoft Visual Basic for Applications (VBA) 

environment and object model.  



 

72 0207 987 3777  www.MicrosoftTraining.net 

 

Change Macro Security Settings 

You can change macro security settings in the Trust Center, unless a system 

administrator in your organization has changed the default settings to prevent 

you from changing the settings. 

1. On the Developer tab, in the Code group, click Macro Security. 

2. In the Macro Settings category, under Macro Settings, click the option that 

you want. 

 NOTE   Any changes that you make in the Macro Settings category in Excel apply 

only to Excel and do not affect any other Microsoft Office program. 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 73 

 

Appendix 

Class Modules 

 

What can be done with Class Modules? 
Class modules allow you to create and use your own object types in your 

application. This implies the following; 

 

 You can easily write code that works with any workbooks that do not have any 

code.  

 Two or more procedures for the event of a command button can be 

consolidated in one  

 The code is easy to use by concealing logic and data.  

 

Why use Class Modules?  
Classes make your code: 

 

 Development simpler  

 More manageable  

 Self-documenting  

 Easier to maintain 

 

What is a Class?  
A Class is a Blueprint or template of an Object.  

 



 

74 0207 987 3777  www.MicrosoftTraining.net 

 

In Excel VBA, an Object can mean Workbooks, Worksheets, User forms and 

Controls etc. Normally an Object has Properties or Methods. A Property stands for 

Data that describes the Object, and a Method stands for an action that can be 

ordered to the object.  

 

Properties and Methods of the Object depend on the kind of Object.  

For Example; 

 

Worksheet (1).Select 

 

... selects the first worksheet in the workbook. Select is a method of the worksheet 

object. 

 



 

www.MicrosoftTraining.net 0207 987 3777 75 

 

How Does a Class Module Work? 
A Class Module is a place where a Class is defined. The procedures in a class 

module are never called directly from other modules like the procedures placed 

in the standard modules.  

 

In the view of a standard module, the class module doesn't exist.  

 

The thing that exists in the view of a standard module is an instance of the object 

generated by the class defined by the class module. The methods and procedures 

of the class are defined within the class module. 

 

Key Elements in a class module 
The class module defines all the properties and methods associated with the 

class. In the example below the “customer” class has two properties associated 

properties; Name and Main Address. 

 

These are defined by the Property Get and Property let Procedures (see below). 

 

The Customer ID is calculated by taking the leftmost 3 characters from the 

customer’s Name and concatenating that with the 5 leftmost characters from the 

main Address. This is the result of the method GetCustomerID, and is defined in a 

function in the class module 

 

Property Get and Let Procedures 
A property is implemented using a property let and a property get procedure. 

When someone sets a value for a property the property let procedure is called 

with the new value. When someone reads the value of a property the property 



 

76 0207 987 3777  www.MicrosoftTraining.net 

 

get procedure is called to return the value. The value is stored as an internal 

private variable. 

 

Read only properties can be created by implementing a property get procedure 

without a corresponding property let procedure.  



 

www.MicrosoftTraining.net 0207 987 3777 77 

 

Example of a Class Module 

 

Option Explicit 

 

Private strName As String 

 

Private strAddress As String 

 

Public Property Get Name() As String 

    Name = strName 

End Property 

 

Public Property Let Name(ByVal value As String) 

    strName = value 

End Property 

 

Public Function GetCustomerID() 

    GetCustomerID = Left(strName, 3) & Left(strAddress, 5) 

End Function 

 

Public Property Get MainAddress() As String 

    MainAddress = strAddress 

End Property 

 



 

78 0207 987 3777  www.MicrosoftTraining.net 

 

Public Property Let MainAddress(ByVal value As String) 

    strAddress = value 

End Property 

 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 79 

 

Referring to user defined Objects in Code 
This simply involves creating an instance of the Class in Code and then 

manipulating it is the way you would any other object. 

 

The following code would be placed in a standard module, and refers to the 

customer object defined previously. 

 

Option Explicit 

Dim aCustomer As Customer (1) 

Sub TestCustomer() 

   Set aCustomer = New Customer    (2) 

    aCustomer.Name = "Evil Genius" (3) 

    aCustomer.MainAddress = "123 the Hollowed out Volcano" (4) 

    MsgBox "Company ID is " & vbCrLf & aCustomer.GetCustomerID() (5) 

End Sub 

 

Line 1 defines an object variable as a Customer variable, and line 2 sets it as a new 

customer object. Line 3 assigns a value to its name property and line 4 a value to 

its Main Address property. 

 

Line 4 uses the GetCustomerID Method to generate the CustomerID value and 

returns it in a message box. 

 



 

80 0207 987 3777  www.MicrosoftTraining.net 

 

Using IntelliSense™ 
Microsoft IntelliSense is a convenient way to access descriptions of objects and 

methods. It speeds up software development by reducing the amount of name 

memorization needed and keyboard input required. Once a class is defined in a 

class module, Intellisense will automatically provide drop down lists showing the 

methods and properties of objects the names of which have been entered into 

the VBE. 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 81 

 

Programming Techniques 

 

Writing effective code is both a science and an art. There are obviously rules of 

logic and syntax that define what will and will not work. Outside of this however, 

there are usually a multiplicity of ways to achieve a particular end, and as your 

experience grows you will find a style that suits you. However there are various 

conventions and best practises that when followed will make your code simpler 

and more efficient. 

 

Best Practice for Excel Programming 
 

When writing VBA code for Excel, it is best whenever possible to make use of 

Excel’s built in functionality rather than trying to replicate it in your code. For 

example, if you were working with a list and wanted to place subtotal within it at 

the end of various groups, you could: 

 

1. Write code that inserts a blank row at the end of each group and then insert a 

function to total the rows above it. 

2. Alternatively, you could use the subtotalling method of the current region to 

accomplish the same end.  

 

The later technique is the more efficient as it is briefer, easier to understand and 

executes more quickly. There are also associated methods for removing the 

subtotals. 

 

 

Sub SubTotals() 



 

82 0207 987 3777  www.MicrosoftTraining.net 

 

 

 

 

    Range("A6").CurrentRegion.Sort key1:=Range("a7:a41"), Header:=xlYes 

     

    Range("A6").CurrentRegion.Subtotal Groupby:=1, Function:=xlSum, _ 

TotalList:=Array(6, 11, 16)     

     

     

 

End Sub 

 

 

The code above sorts a database, and then inserts subtotals based on the sorted 

column. 


