I:l Microsoft Office Training Series

Fxcel VBAES

Advanced

| .

® Courses never ® 12+ Months
Cancelled Schedule

@ 24 Months ® UK Wide
Online Support Delivery

©O@OOL MicrosoftTraining.net

Learning & I
Performance Institute | m —'\ Micresoft Partner

Accredited Learning Provider

Certified Silver Partner

Welcome to your Excel Intermediate training course

The range object

Chart VBA

PivotTable VBA

Store data in Arrays
Execute code by events

Working with text files

N o vk W=

Active X data object

Professional Development Series
Microsoft Technical Series

MicrosoftTraining.net/Feedback

ST =,

Contents

Unit 1 - Working with Ranges 1
WHat IS @ RANGET ...ttt e e ettt ettt 1
Range Property of the APPlICatioN ...ttt ss st sanen 1
CUITENTREGION PrOPEITY ..ottt bbbt 2
€IS PrOPEITY ..ottt ettt sttt 3
UNION PrOPEITY ..ottt et s et s 4
NBMING RBNGES.....ouiiiiiiieiieieie sttt sttt es st ss bbb een 8
WOTKING WIth COlRCLIONS ...ttt st ss s bbb ees 10

The COllECtION OBJECE ...ttt ettt et 10
Explicit creation Of @ COHBCHION ...t 10
Referring to a collection in a standard MOdUIE ... 12
Using the Collections ObJECt DIFECLIYcoovurieriereerieieirieres sttt essees 14

Unit 2 - Charts 16
Creating charts from WOrksheet data ...t 16
Key Properties and methods of the chart 0DJect ..., 16
Creating Charts frOM AITAYS ...ttt ss st bt s s ba s s ssn s banses 18

Unit 3 - PivotTable Object 21
Understanding PIVOTTADIES ...ttt sese i eise i e ssse e e sssesensssnes 21
Creating A PIVOITADIE ...ttt sttt sttt bbbt 21

Procedure 23
Using the PivotTable Wizard MeEthO ... st sssssseiees 24
USING PIVOTFIEIAS ..ottt bbbttt sttt st st 26

Unit 4 - Working with Arrays 29
WAL S @N ATTAY ...ttt sttt st bbb s st se bbb b nsnes 29

AATTAY SIZES...ooeietiee ettt s bbb 29

ONE DIMENSIONAI ATTAYS.....coieeieiereireietiseteess ettt sse et ss et ss s e ss st ssee s se s et e saees 31
Arrays With MUItiple DIMENSIONS ...ttt sttt sesese st see st sese st sese st sssesenens 33

A WOrd about INAEX NUMDETS......... ittt sttt st 35
UDOUNG @NA LDOUNG ...ttt st s st 37
S@VING @ITAYS 1IN NAIMES c...eoieoereieecereeeiaeereteese et ee e ssee s ss s ss et seees s ss et s e ss s es e s ssees e saessesssesaees 37
VATTANT ATTAYS ...ttt st et ettt 39
ATTAY EXAMIPIES ...ttt bbbt s bbbttt 39
Unit 5 - Triggers and Events 42
WOIKDOOK EVENTS ..ottt ettt st et 44
WOrkDOOK EVENT EXAMPIES......uivmiieciriiniirieieciectre ittt sttt sttt et 45
WOIKSNEET EVENTS.......ooiieeiee ettt sttt sttt e 48
WOrksheet EVENES @XAMPIES ...ttt ettt s st entes 48
TimMEr CONTrOHEA MACKO ..ottt ettt 50
Unit 6 - Working with Text Files 50
IMPOITING @ TEXE FIlE ettt sttt 51
FIESTI M ..ot bbbt s 51
Unit 7 - Working with Procedures and Parameters 53
PrOCEAUIE ATGUMENTS.couierieeeieeieieeeeretee et asse e sese s e e e e e et 53
PASSING ATGUIMENTSoceeeieieirieiet ittt sttt te sttt es s bbbt eae s bbbt st ees 53
OPLIONAl AFGUIMENTS ...ttt sttt s s bbbt n b s s st essas 55
DEFAUIL VAIUES ...coee et et 57
Passing arguments by value and referenCe ... sesesese e 57
Unit 8 - Active X Data Objects 61
KEY OJECES ...ttt sttt ss bbbttt b s s s s bbbt 61
The CONNECHION ODJECL ...ttt se e 62

The RECOIASET ODJECE ...ttt casesiestsesae st st sesise st it senens 63

A word about the CONNECLION SEHNGvvririeierrie sttt st senses 65

4

@@@ 0207 987 3777

www.MicrosoftTraining.net

Unit 9 - Creating Add-Ins

VBA Password Protection

Unit 9 - About Macro Security

Macro security settings and their ffECES.........oviieie et

Change Macro Security Settings.........

Appendix

Class Modules

What can be done wWith Class MOAUIES?o.o e

Why use Class Modules?......................
What is @ Class?......ccvevververecrecrecnn.
How Does a Class Module Work?......
Key Elements in a class module..........
Property Get and Let Procedures.......

Example of a Class Module..............

Referring to user defined ObJECts iN COUE.......iinirinree ettt sens

Using IntelliSense™........ccccoevevererreunn.

Programming Techniques

Best Practice for Excel Programming

68

69

70

70

72

73

73

73

73

73

75

75

75

77

79

80

81

Unit 1 - Working with Ranges

In this unit you will learn how to:
» Understand the range object
» Use the Special cell method

» Work with collections

What is a Range?

When we refer to a range in Excel we mean either a singular cell, a rectangular
block of cells, or a union of many rectangular blocks. In VBA Range is an object
with its own properties and methods. Just to complicate things range can also be
a property of the application object, the worksheet object and indeed the range

object, where it refers to a specified range object.

Range Property of the Application

You can use the range property of the application to refer to a range object on

the active worksheet.
For example;
Range("B2")
Range("A1:B7")

Range("A1:B3,E1:09")

Note the last example refers to a union, or non-contiguous range.

www.MicrosoftTraining.net 0207 987 3777 @@@ 1

CurrentRegion Property

If you click inside a table in a worksheet and press CTRL Shift * while you are

recording a macro you will in the Visual Basic Editor find the code:

Range(“a1”).CurrentRegion.Select (May be not Range(“a1”) but the cell reference

you selected before you pressed the shortcut keys).

The CurrentRegion object is very useful in VBA. Especially if you want to create

dynamic codes you do not need to update when your source data change.

Range("a1”).CurrentRegion.Rows.Count will count how many rows you have in a

table which have A1 as a part of the table.

Range(“a1”).CurrentRegion.Columns.Count will count how many columns you

have in a table which have A1 as a part of the table.

This is very useful in a lot of codes. If you create a For Next loop you want to loop
through a table and the number of records can change you can create the loop
like this:

For i=1 To Range(“a1”).CurrentRegion.Rows.Count
Next i

The above example is not the best approach to create a dynamic code. The will
ask Excel to count the number of records for each time the loop is running and if

the loop needs to run through 12000 record the code:
Range(“a1”).CurrentRegion.Rows.Count

Will have to count to 12000 12000 times and of course this will add time to have

fast the code is running.

A much better approach is to store the number of records in a data variable and

then use the data variable in the loop. Then Excel only need to count one time.

2 @@@ 0207 987 3777 www.MicrosoftTraining.net

Dim ICounter as Long
|ICounter= Range(“a1").CurrentRegion.Rows.Count

Fori=1 To ICounter

Cells Property

e The Cells Property of the range object can be used to specify the

parameters in the range property to define a range object.
For example the following refers to range A1:E5
Range (Cells(1,1), Cells (5,5))

The cells property can also be used to refer to particular cells within a range; or a

range within a range.
The following refers to cell F9

Range ("D10:G20").Cells (0,3)

www.MicrosoftTraining.net 0207 987 3777 @@@

You can also shortcut this reference thus

Range (“D10:G20") (0,3)

Union Property

The Union property can make a union of any combination of reference properties:
Union(Range(“A1:A10"),Rows(“3:5"),Columns("K:M"),Cells(2,2)).Select

The code above will select the range A1:A10 and the row 3 to 5 and column K to

M and the cell B2. This of course can be very useful in VBA.

4 @@@ 0207 987 3777 www.MicrosoftTraining.net

The SpecialCells Method

The SpecialCells method allows certain types of cell to be identified within a

range.

It has the following syntax:

SpecialCells(Type, Value)

The type argument specifies the cells to be included

xICellTypeAllFormatConditions

Cells of any format

xICellTypeAllValidation

Cells having validation criteria

xICellTypeBlanks

Empty cells

xICellTypeComments

Cells containing notes

xICellTypeConstants

Cells containing constants

xICellTypeFormulas

Cells containing formulas

xICellTypeLastCell

The last cell in the used range

xICellTypeSameFormatConditions

Cells having the same format

xICellTypeSameValidation

Cells having the same validation criteria

xICellTypeVisible

All visible cells

xICellTypeFormulas.

Cells containing formulas

x|CellTypeLastCell.

The last cell in the used range

x|CellTypeSameFormatConditions.

Cells having the same format

xICellTypeSameValidation.

Cells having the same validation criteria

www.MicrosoftTraining.net

0207 987 3777

000

xICellTypeVisible. Al visible cells

This argument is used to determine which types of cells to include in the result

x|Errors

xlLogical

xINumbers

xITextValues

6 @@@ 0207 987 3777 www.MicrosoftTraining.net

The following code will delete all the numbers in a worksheet, leaving only text

data and formulae in place

Sub DeleteNumbersinworksheet()

Cells.SpecialCells(xICellTypeConstants, xINumbers).ClearContents

End Sub

The following code will delete all blank rows in a list

Sub DeleteBlankRows()

Range("a:a").SpecialCells(xICellTypeBlanks).EntireRow.Delete

End Sub

The following code will loop through all numbers in a worksheet and add 10% to

the value if it is greater than 300.

Sub LoopAllINumbers()
Dim Cell as Range
For Each cell in Cells. SpecialCells(xICellTypeConstants, xINumbers)
If Cell>300 then
Cell=Cell*1.1
End If

Next Cell

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@ 7

The following code will embold all text in the worksheet.

Sub AllText()

Cells. SpecialCells(xICellTypeConstants, xITextValues).Font.Bold=True

End Sub

Naming Ranges

One of the most useful techniques in Excel is to name ranges. A named range can

simplify code as it is possible to refer to the name and not the cell references

To create a named range we use the add method of the workbook’s names
collection. The following code creates a named range called “NewName"” on

sheet2 of the active workbook on the range “E5:J10"

Sub AddNamedrange()

Names.Add Name:="NewName", RefersTo:="=Sheet2!E5:J10"

End Sub

8 @@@ 0207 987 3777 www.MicrosoftTraining.net

Alternatively it is possible to set a name by defining the name property of the

range object.

Sub AddRangeNameProperty()

Range("A1:V3").Name = "RangeName"

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@

Working with Collections

A class is a blueprint for an object, and individual objects are “instances” of a
class. A collection is simply a group of individual objects with which we are going

to work.

For example in the code above we have defined a class called customers, and
code to generate a single instance of that class; i.e. one individual customer. In
practice we will be working with more than one customer and we will wish to
define them as being part of a collection object so we can process them using

some of the methods and properties of the collection object.

The Collection Object
The collection object has a number of properties and methods associated with it;

of which the most important are:

Method/Property | Description

Count A method that returns the number of objects in the
collection

Add A method that adds an item to the collection

Remove Removes an item to a collection

[tems(index) Refers to an individual item in the collection either by its
index number (position in collection) or by its name

Explicit creation of a collection
We can create a collection in a class module. This simply requires us to define the

collections objects and methods in the normal way

10 @@@ 0207 987 3777 www.MicrosoftTraining.net

Option Explicit

Private FCustomers As New Collection

Public Function add(ByVal value As Customer)
Call FCustomers.add(value, value.Name)

End Function

Public Property Get Count() As Long
Count = FCustomers.Count

End Property

Public Property Get Items() As Collection
Set Items = FCustomers

End Property

www.MicrosoftTraining.net 0207 987 3777 @@@

11

Public Property Get Item(ByVal value As Variant) As Customer
Set Item = FCustomers(value)

End Property

Public Sub Remove(ByVal value As Variant)
Call FCustomers.Remove(value)

End Sub

The above code simply defines a collection called customers (class module name).
The variable FCustomers is defined as a collection object. The various methods
and properties are then defined. For example, the remove method is defined in a
procedure that uses the remove method of the collection object to remove a

specified item from the collection.

Referring to a collection in a standard module
Once defined, a collection can be employed in the same way as any other

collection.

Dim aCustomer As Customer

Dim theCustomers As New Customers
Set aCustomer = New Customer
aCustomer.Name = "Kur Avon"
aCustomer.MainAddress = "132 Long Lane"

Call theCustomers.add(aCustomer)

12 @@@ 0207 987 3777 www.MicrosoftTraining.net

Set aCustomer = New Customer
aCustomer.Name = "Fred Perry"

aCustomer.MainAddress = "133 Long Lane'

Call theCustomers.add(aCustomer)

Set aCustomer = New Customer
aCustomer.Name = "Jo Bloggs"

aCustomer.MainAddress = "134 Long Lane'

Call theCustomers.add(aCustomer)

For Each aCustomer In theCustomers.ltems
Sheets(1).Range("A1").Select
ActiveCell.value = aCustomer.Name
ActiveCell.Offset(0, 1).value = aCustomer.MainAddress
ActiveCell.Offset(1, 0).Select

Next aCustomer

The above code simply defines a “customer” variable and a “customers” variable;
assigns three objects to the collection and then writes the name and address to a

worksheet in the current workbook, using a “FOR EACH" loop.

www.MicrosoftTraining.net 0207 987 3777 @@@ 13

Using the Collections Object Directly

It is possible to create a collection using the VBA collection class directly. The
code below creates a collection called employees and assigns three instances of

the custom object employees to it.

Sub TestEmployeesCollection()

Dim anEmployee As Employee

Dimi As Long

Set anEmployee = New Employee
anEmployee.Name = "Stephen Williams"
anEmployee.Rate = 500
anEmployee.HoursPerWeek = 50

Call Employees.add(anEmployee, anEmployee.Name)

Set anEmployee = New Employee
anEmployee.Name = "Kur Avon"
anEmployee.Rate = 50
anEmployee.HoursPerWeek = 50

Call Employees.add(anEmployee, anEmployee.Name)

Set anEmployee = New Employee

14 @@@ 0207 987 3777 www.MicrosoftTraining.net

anEmployee.Name = "Bill Bailey"
anEmployee.Rate = 250
anEmployee.HoursPerWeek = 50

Call Employees.add(anEmployee, anEmployee.Name)

Set anEmployee = New Employee

anEmployee.Name = "Alexander Armstrong"

anEmployee.Rate = 250

anEmployee.HoursPerWeek = 50

Call Employees.add(anEmployee, anEmployee.Name)

For Each anEmployee In Employees

MsgBox anEmployee.Name & " Earns " & "£" &
anEmployee.GetGrossWeeklyPay()

Next anEmployee

End Sub

www.MicrosoftTraining.net 0207 987 3777

o000

15

Unit 2 - Charts

In this unit you will learn how to:

» Create charts using VBA

Creating charts from worksheet data

Charts are created by working with the chart object. The key elements to a chart

are:

= Data source

= Type

= Location

These are controlled by the following properties.

Key Properties and methods of the chart object

Properties/Methods Description

SetSourceData This specifies the data that will be modelled in the
chart. Includes 2 key arguments; Source which
specifies the data range, and PlotBy which determines
if the series is in rows or columns

ChartType Select one from a list of chart types recognized by
Excel

Location Specifies if the chart is to be embedded into a
worksheet or whether it will occupy a sheet of its own

Add Adds a new chart to the active workbook

s 900

0207 987 3777 www.MicrosoftTraining.net

The following code example creates a simple chart object and then sets the above

properties.

Public Sub EmbeddedChart()

Set aChart = Charts.Add
Set aChart = aChart.Location(Where:=xILocationAsObject, Name:="Sheet1")
With aChart
.ChartType = xI3DBarClustered
.SetSourceData Source:=Sheets("Sheet1").Range("B2:E6"), PlotBy:=xIRows
HasTitle = True
. ChartTitle.Text = "Sales Summary"

End With

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@ 17

Creating Charts from Arrays

In the example above, the chart’s source data was to be found in sheet1 range
B2:E6 of the active workbook. It is however possible to set a chart’s source data to

the contents of an array.

Public Sub ChartFromArray()

Dim SourceRange As Range
Dim aWorksheet As Worksheet
Dim aWorkBook As Workbook
Dim aChart As Chart

Dim aNewsSeries As Series

Dim intCount As Integer

Dim SalesArray As Variant

Dim MonthArray As Variant
MonthArray = Array("Jan", "Feb", "March")
Set SourceRange = Sheets("Source Sheet").Range("B2:E6")

Set aWorkBook = Workbooks.Add
Set aWorksheet = aWorkBook.Worksheets(1)

Set aChart = aWorkBook.Charts.Add

18 @@@ 0207 987 3777 www.MicrosoftTraining.net

With aChart

ForintCount=1To 4

‘create a new series

Set aNewSeries = .SeriesCollection.NewSeries

SalesArray = SourceRange.Offset(intCount, 1).Resize(1, 3).Value

aNewsSeries.Values = SalesArray

aNewSeries XValues = MonthArray

Next intCount

.HasLegend = True

HasTitle = True

.ChartTitle.Text = "First Quarter Sales"

End With

www.MicrosoftTraining.net 0207 987 3777

o000

19

The above code creates a new workbook, adds a chart and then populates the

chart with data taken from a source workbook.

Within the For...Next loop, four new series are created. At each loop a new series
is created with the “NewSeries” method. The appropriate row’s data is then
assigned directly to the variant “SalesArray”, and sales array is assigned to the

values property of the new series.

20 @@@ 0207 987 3777 www.MicrosoftTraining.net

Unit 3 - PivotTable Object

In this unit you will learn how to:

= Use VBA to create PivotTables

Understanding PivotTables
A pivot table is a table that can be used to summarize data from a worksheet or

an external source such as a database.

A Pivot table can only be created using the Pivot table wizard.

Creating A PivotTable
The wizard makes the creation of the pivot table quite easy. By following a series

of prompts the wizard takes over and creates the pivot table for you. To do this:

Insert Ribbon > PivotTable Button (Far left)

www.MicrosoftTraining.net 0207 987 3777 @@@ 21

000

0207 987 3777

www.MicrosoftTraining.net

Procedure

Create PivotTable

Choose the data that you want to analyze

@ Select a table or range

Cheet1812A81:8F219

Table/Range:

() Use an external data source
Connection name:
@ Mew Worksheet

() Existing Worksheet

Location:

Choose where you want the PivotTable report to be placed

PivotTable Field List

Choose fields to add to report: ‘_-l:ﬁ T
[T]EmployeelD -
[T|Employee Mame

[[|oos
[TBranch

[T]current salary -

m

Drag fields between areas below:
“ Report Filter 4 Column Labels

E Values

1] Row Labels

[7] pefer Layout Update Update

www.MicrosoftTraining.net

0207 987 3777

Select Where the
data is that you

want to analyze

Select where you
want to create the

report

Click OK.

Drag the field buttons
to the desired page,
row, column and data
fields.

o000 23

Using the PivotTable Wizard Method
The PivotTable Wizard method of the Worksheet object can be used to create a

pivot table in code without displaying the wizard.

The PivotTable Wizard method has many arguments. The main ones are

described below:

Argument Definition

SourceType The source of the PivotTable data. The SourceData

argument must also be specified when using this.

SourceData A range object that specifies the data for the
PivotTable.

TableDestination A range object indicating where the table will be

placed.

TableName The name by which the table can be referred.

An example of the PivotTable Wizard method is shown below:

Sub MakePivot ()

Dim DataRange As Range
Dim Destination As Range

Dim PvtTable As PivotTable

24 @@@ 0207 987 3777 www.MicrosoftTraining.net

Set Destination = Worksheets("Sales Summary").Range("A12")

Set DataRange = Range("A9", Range("J9").End(xIDown))

ActiveSheet.PivotTableWizard SourceType:=xIDatabase, _

SourceData:=DataRange, TableDestination:=Destination, TableName:="SalesInfo"

End Sub

This code runs the PivotTable wizard, capturing the data in the current worksheet
then placing a pivot table in the worksheet called “Sales Summary”. In this
instance the PivotTable contains no data, because the row, column and data fields

haven't been assigned.

www.MicrosoftTraining.net 0207 987 3777 @@@ 25

Using PivotFields
Once a PivotTable is created pivot fields must be assigned. The PivotFields

collection is a member of the PivotTable object containing the data in the data
source with each Pivot Field getting its name from the column header.

PivotFields can be set to page, row, column and data fields in the PivotTable.

In the Sales — April 2004 the fields are: Sales Date, Make, Model, Type, Colour,

Year, VIN Number, Dealer Price, Selling Price, Salesperson.

The table below lists the PivotTable destinations for PivotFields.

Destination Constant

Row Field xIRowfField
Column Field xlColumnField
Page Field xIPageField
Data Field xIDataField
To Hide A Field xIHidden

The following syntax shows how a PivotField is defined by setting its Orientation

property to the desired destination column:

26 @@@ 0207 987 3777 www.MicrosoftTraining.net

.PivotTables(Index).PivotFields(Index).Orientation = Destination

.PivotTables(“SalesInfo”).PivotFields("Salesperson”).Orientation = xIPageField

PivotTables(“SalesInfo”).PivotFields("Colour”).Orientation = xIRowField

To optimize the setting of the Pivot Table orientation use the With Statement:

Set PvtTable = Sheets("Sales Summary”).PivotTables("SalesInfo”)

With PvtTable

.PivotFields("Salesperson”).Orientation = xIPageField
.PivotFields(“Year").Orientation = xIRowField
.PivotFields("Make").Orientation = xIColumnField

.PivotFields(“Selling Price”).Orientation = xIDataField

End With

www.MicrosoftTraining.net 0207 987 3777 @@@

27

000

0207 987 3777

www.MicrosoftTraining.net

Unit 4 - Working with Arrays

In this unit you will learn how to:
» Understand an array
» Create one dimension and multiple dimension arrays

= Work with Ibound & ubound

What is an Array

An array can be regarded as a variable that can hold a collection of values which
can be referenced by an index number. Typically an array is defined in the same

way as a variable, with the difference that it is followed by brackets.

The following code contains an array that can hold 5 integers

Dim intArray(1 to 5) as integer

When creating an array it is necessary to specify its size (the number of elements

that it can hold) and the number of dimensions contained by the array.

Array Sizes

An array’s size can be specified either when it is declared or later during the

code’s execution. The former case creates a static array, the later a dynamic array.
A static array is an array that is sized in the Dim statement that declares the array.

Dim StatArray(1 To 100) As string

www.MicrosoftTraining.net 0207 987 3777 @@@ 29

You can't change the size or data type of a static array.

A dynamic array is an array that is not sized in the Dim statement. Instead, it is

sized later with the ReDim statement.

Dim DynArray() As string
ReDim DynamicArray(1 To 100)

You can change the size of a dynamic array, but not the data type.

30 @@@ 0207 987 3777 www.MicrosoftTraining.net

One Dimensional Arrays

The arrays considered so far are one dimensional, in that they have a simple row

of variables. For example an array defined as;

Dim strArray(1-5) as string

Could be visualized as

1 2 |3 |4 |5

with 5 spaces which can contain string values.

When the array is populated, we could visualize the following

Bill | Ben | Fre | Mary |Jane

In the first view, the numbers are the array’s index numbers which are used to
identify a particular element. The second refers to the values actually contained in

the array.

To allocate a value to a location in array, it is simply necessary to reference the

index number and set that equal to the value required. For example:
strArray(3) = “Fred”

..would be the code used to set the value of the array's third element to the

string value “Fred".

www.MicrosoftTraining.net 0207 987 3777 @@@ 31

000

0207 987 3777

www.MicrosoftTraining.net

Arrays with Multiple Dimensions

Arrays can have more than one index number; that is they can have more than

one dimension. Typically we will use 2 dimensional arrays which are in effect

virtual tables.

The following code

Dim strArray(1 to 5,1 to 3)

....creates the following

1,1112113
21122123
3113233
41 14,2 |43
51152153

This is an array with 5 rows and 3 columns. If we wanted to set the value of the

last element in the array to the word “hello”, we would need;

StrArray(5,3) = "Hello”

While single and two dimensional arrays are the most commonly used; arrays can

have up to 60 dimensions.
www.MicrosoftTraining.net

0207 987 3777

o000

33

Thus the following
StrArray(1 to 3,1 to 9,1 to 6)
....defines a virtual cube containing 162 spaces.

Once we exceed 3 dimensions, mathematically we are working with hypercubes

which are hard to visualize! Fortunately, it is unlikely that you will ever need them.

34 @@@ 0207 987 3777 www.MicrosoftTraining.net

A word about index numbers

Thus far we have explicitly specified the index numbers in an array as follows;

Dim intArray(1 to 4) as integer

..... which specifies that the first location is numbered 1 and the last 4.

We could however define the array as follows

Dim intArray(4) as integer

Here we have again defined an array with 4 locations. However, under normal

circumstances the index numbers would be;

With the first index number starting zero.

This can be changed by using the Option Base statement in the declarations

section of the module containing the code
Option Base 1

..... sets the lower bound index of any array to 1.

www.MicrosoftTraining.net 0207 987 3777 @@@ 35

It is however better practice to explicitly specify the lower bound index number in

the array’s declaration.

36 @@@ 0207 987 3777 www.MicrosoftTraining.net

Ubound and Lbound

The Ubound and Lbound functions return the highest and lowest index numbers

in the array. They are useful when cycling through the values contained in an

array.

The following code uses the Lbound and Ubound functions to view each item

contained in an array

Public Sub Array1()
Dim data(1 To 10) As Integer
Dim | As Integer
For | = LBound(data) To UBound(data)
MsgBox data(l)
Next |

End Sub

Saving arrays in names

As with any variable the array has a limited lifetime which terminates at the latest

when the application ceases to run. However, in the same way that we can give a

range a name that is saved within the workbook we can also name an array.

This array will then be saved with the workbook and can then be available when

the workbook opens.

The following code creates an array, populates it and then saves it to a name;

using the add method of the names collection.
www.MicrosoftTraining.net 0207 987 3777 @@@ 37

This technique allows large volumes of data to be stored in a workbook, outside

of the standard worksheets.

Public Sub ArrayToName()
Dim MyArray(1 To 200, 1 To 3) As Integer
Dim | As Integer
Dim J As Integer
Forl=1To 200
ForJ=1To3
MyArray(l, J) =1 +J
Next J
Next |
Names.Add Name:="MyName", RefersTo:=MyArray

End Sub

38 @ @@ 0207 987 3777 www.MicrosoftTraining.net

Variant Arrays

Earlier in this chapter it is told that you will need to define the size of the array.

Well it is not always necessary. You can create an array like this:
Dim MyArray as Variant

This can be very convenient but it can only be declared as a Variant. Variant is not
the most efficient data type to use. Variants use more memory and will slow

down the speed of the code.
Anyway this type of arrays can be very useful. It is very easy to fill the array:
MyArray=range("A1").Currentregion

The above will take all records from any size of list starting from A1 and put the

data in an array.

Array Examples

In the table below the staff members are going to have a raise of 20%. A loop
could loop through the values in the worksheet but if it is a huge amount of

records an array will speed up the process.

A B c D E F G
1 |Worldwide Sporting Goods
2 | Employee Information
3
4
5 |Last Name First Name Hire Date Department Status Salary New Salary
6 |Adelheim John 18/11/1988 Production 8 £ 2300000
T |Baker Amy 28/07/M1988 Administration 4 £ 19,000.00
8 |Baker Christine 09/05/M1986 Administration 4 £ 2200000
9 |Eastburn George ATI06M998 Administration 3 £ 50,000.00
10 |Johnson Jon 10/01/M1982 Administration 3 £ 2500000
11 \Bachman Vance 15121997 Development 7 £ 45000.00
12 Callaghan Ronald 22/09/M1998 Development 2 £ 6200000
13 Deibler Karl 22/09/M11990 Development 2 £ 2400000
14 |Albrecht Horst 21111997 Production 2 £ 41,000.00
15 |Davis Henry 02/09/1993 Production 2 £ 28,000.00
16 |Deal Laura 17/05/1995 Production 2 £ 30,000.00
17 [Fimbel Josephine 22/09/M1997 Production 2 £ 40,000.00
18 |Fredericks Miller 05/M10/M1978 Production 3 £ 40,000.00
19 [Messick Steve 08/01/1982 Production 3 £ 28,000.00
20 |Parker Paul 05/04/1972 Production 2 £ 48000.00
21 |Roy Audrey 17081973 Production 2 £ 21,000.00
22 |Sticklebaugh Wendy 24/06/M1978 Production 3 £ 3200000
23 |Trimbach Doug 24111968 Production 2 £ 16,000.00
24 |'Wang Will 271021993 Production 4 £ 2200000
25 |Abramas Alice 30111992 Sales 2 £ 25000.00
26 |[Caracio Terry 15/04/1992 Sales 2 £ 2500000
27 |Carpenter John 271051993 Sales 2 £ 26,000.00
28|Edwards Fred 13/09/1998 Sales 4 £ 55000.00
29 |[Edwards Susan 19/01M1996 Sales 2 £ 37,000.00
30 |Faraco Janice 22121993 3ales 2 £ 29,000.00
31 [Feldgus Ernest 21111989 Sales 2 £ 2400000
32 |Killough Frank 15/12M1983 Sales T £ 45000.00
33 |Weinstein Perry 31/08M1981 Sales 3 £ 3200000

D4

www.MicrosoftTraining.net 0207 987 3777 @@@ 39

The code below will take the salaries in the F column and put them in the
computer’'s memory in the MyArray array. The For Next loop will loop through

each salary in the array and add 20%. The line:

Range("G6").Resize(UBound(MyArray, 1), UBound(MyArray, 2)) = MyArray

adds the content from the array in column G.

Sub Add20PercentToValues()
Dim MyArray As Variant

Dim ICounter As Long

MyArray = Range(Range("F6"), Range("F6").End(xIDown))

For ICounter = LBound(MyArray, 1) To UBound(MyArray, 1)

MyArray(ICounter, 1) = MyArray(ICounter, 1) * 1.2

Next

Range("G6").Resize(UBound(MyArray, 1), UBound(MyArray, 2)) = MyArray

End Sub

The code below will add all the data from the whole table to the computer’s
memory. The IF decision code will test which department the staff members are

working in and give them a raise based on the department.

40 @@@ 0207 987 3777 www.MicrosoftTraining.net

Sub CalcNewsSalary()
Dim MyArray As Variant

Dim ICounter As Long

MyArray = Range(Range("a6"), Range("a6").End(xIDown).End(xIToRight))

For ICounter = LBound(MyArray, 1) To UBound(MyArray, 1)

If MyArray(ICounter, 4) = "Sales" Then
MyArray(ICounter, 6) = MyArray(ICounter, 6) * 1.07
Elself MyArray(ICounter, 4) = "Administration” Then
MyArray(ICounter, 6) = MyArray(ICounter, 6) * 1.03
Elself MyArray(ICounter, 4) = "Production” Then
MyArray(ICounter, 6) = MyArray(ICounter, 6) * 1.05
Elself MyArray(ICounter, 4) = "Development” Then
MyArray(ICounter, 6) = MyArray(ICounter, 6) * 1.08
End If

Cells(5 + ICounter, 7) = MyArray(ICounter, 6)

Next ICounter

End Sub

www.MicrosoftTraining.net 0207 987 3777

o000

41

Unit 5 - Triggers and Events

In this unit you will learn how to:

» Create workbook events
= Create worksheet event

= Work with timed events

An event is “something that happens” to an object, and usually occurs when an

object undergoes a change of state.

For instance when a workbook is selected, its status changes from deactivated to
activated and the Activate event fires. Code can be embedded in special event

procedures and will run whenever certain events occur.

The screenshot below shows how to select an object and then access the relevant

event

42 @@@ 0207 987 3777 www.MicrosoftTraining.net

‘B File Edit View Insett Format

Debug Run Tools Add-Ins

Window Help

Type a question for help

Alphabetic | Categorized |

[T koo
AutoUpdateFrequency []
ChangeHistoryDuration 0

>

[

- % AR 9 0 om e ™EE @ ne,con B
Project - VBAProject x| [workbool | [open
=@ E - F— [ctivat
] Option Explicit e
E] %gn:rﬂec;éhu‘ﬂ;) . |ddinUninstall a1
icrosoft Excel Obje . | RerXmiExport 3
E5) Sheet1 (Shest1) Private Sub Workbook Open() |AfterXmimport
BeforeClose
~EF] Sheet3 (Sheet3) BeforePrint
46 Thisworkbook End Sub BeforeSave
523 Forme efrexian
UserForm1 Deactivate "
=125 Modules NewSheet ‘a
%8 Module 1
Properties - ThisWorkbook x|
ThisWorkbook Workbook =1

CheckCompatibility False

ConflictResolution 1 - xlUserResolution

Date 1904 False

DisplayDrawingObjects -4104 - xIDisplayShapes

DisplayInkComments True

DoNotPromptForConvert False

EnableAutoRecover True

EncryptionProvider =

EnvelopeVisible False hd
1 Falce e

www.MicrosoftTraining.net

0207 987 3777

o000

Workbook Events

Events for the Workbook object occurs when the workbook is changed or a sheet

in the workbook is changed.

Select the desired project in the Project-window of the VBE and activate the

object ThisWorkbook by double-clicking it. Any event procedures in the

workbook will now be displayed in the Code-window on the right side of the

screen. You can create a new event Procedure by selecting Workbook in the

Object dropdown, and then select an event in the Procedure dropdown.

The main workbook events are:

Activate (When the workbook is selected. Also fires when the workbook

opens, after the open event)
AddinInstall
AddinUninstall

BeforeClose (Can be used to “clean up” workbook before it closes. Also
you can run the save method at this point to ensure the file always

automatically saves any changes)

BeforePrint

BeforeSave

Deactivate (Fires when another workbook or application is selected)
NewSheet (when a new sheet is created)

Open

SheetActivate

SheetBeforeDoubleClick

@@@ 0207 987 3777 www.MicrosoftTraining.net

e SheetBeforeRightClick
e SheetCalculate

e SheetChange

e SheetDeactivate

e SheetSelectionChange
e WindowActivate

o WindowDeactivate

e WindowResize

Workbook event examples

The workbook event below will prompt the user when someone try to print
something in the workbook and ask for a password. If the right password is
entered in the input box prints can be made. If a wrong password is entered the

print event will be cancelled and nothing can be printed.

Private Sub Workbook_BeforePrint(Cancel As Boolean)

Dim PassWord As String

PassWord = InputBox("Enter the Password to Print", "Print Password")
If PassWord = "YouCanPrint" Then

Cancel = False

Else

Cancel = True

End If

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@ 45

The open workbook event below will every time the workbook opens show a

message :
osoft Exce | 3 |
Good morning this Friday 01 07 2016
oK
And another message
osoft Exce [23 |
Please save the work as a new name
Ok
And then open the save as dialog box
Save A | 2 |
« v A » USB Drive (G:) » advVBA v | O Search adv VBA pel
Organise * Mew folder = 0
~
Access Intro new ™ MName Date modified Type Size
Access VBA cou Amanda File folder
Access VBA cow Anastasia File folder
Access VBA cowl Brian File folder
access vba my Excel Adv VBA File folder
access_2010.inte lan File folder
lan2 File folder
AccessVBA an fetee
adv VBA
Advanced charti
Advanced Dashk
Advanced VBA o,
File name: | example®] eventsxlsm -
Save astype: | Excel Macro-Enabled Workbook (*xlsm) ~
Authors: jens Tags: Add atag Title: Add a title
[15ave Thumbnail
A Hide Folders Tools = Save Cancel

46 @@@ 0207 987 3777

www.MicrosoftTraining.net

Private Sub Workbook_Open()

MsgBox "Good morning this " & Format(Date, "dddd dd mm yyyy")
MsgBox "Please save the work as a new name"
Application.Dialogs(xIDialogSaveAs).Show

End Sub

The Workbook new sheet event below will make sure that no one can add new

sheets to the workbook.

Private Sub Workbook_NewSheet(ByVal Sh As Object)
Application.DisplayAlerts = False

MsgBox "you are not allowed to add more sheets to this workbook"
Sh.Delete

Application.DisplayAlerts = True

End Sub

The before close event below will remind the user to save the workbook with a

new name and if the user hasn't cancel close.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

Dim ans As String

ans = MsgBox("Did you save the work with a new name?", vbYesNo)
Cancel = (ans = vbNoO)

ActiveWorkbook.Save

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@ 47

Worksheet Events

In the worksheet dropdown you can access the following events

e Activate
e BeforeDoubleClick

e BeforeRightClick

e Calculate (Runs whenever a formula’s dependent cell value is changed, or

when F9 is pressed.)
e Change

e Deactivate

SelectionChange

Worksheet Events examples

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

Static counter As Integer
If counter = 1 Then
Sheets(Sheets.Count).Activate

counter = counter + 1

Else
Worksheets.Add
counter = 1

End If

End Sub

48 @@@ 0207 987 3777

www.MicrosoftTraining.net

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)

If Not Intersect(Target, Range("a1:b4")) Is Nothing Then
Cancel = True
Application.Dialogs(xIDialogConditionalFormatting).Show
Else
Cancel = False

End If

End Sub

Private Sub Worksheet_Change(ByVal Target As Range)
If Target. Address = "A1" Then

If Target.Value > 80 Then MsgBox "Goal completed"
End If

End Sub

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Cells.Interior.Pattern = xINone
Selection.EntireRow.Interior.Color = vbRed

Selection.EntireColumn.Interior.Color = vbRed

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@

49

Timer Controlled Macro

Timer Event example code:

Private Sub Workbook_Open()

‘Application.OnTime Now() + TimeSerial(0, 0, 10), "TimeMe"

Application.Wait Now() + TimeValue("00:00:05")

MsgBox "Hi its me"

End Sub

If using the OnTime you need to specify another routine for it to go to.

Use this line if you want to run a macro at a preset time e.g. here set for 9.17pm

Application.OnTime TimeSerial(21, 17, 10), "TimeMe"

Use either TimeSerial or TimeValue.

Unit 6 - Working with Text Files

In this unit you will learn how to:
* Import a text file

» Understand FileStream

50 @@@ 0207 987 3777 www.MicrosoftTraining.net

For people that deal with databases and large systems, the text file is the
common ‘language’ that they can all converse in. This could be in a variety of
formats, such as: TXT, PRN, CSV, TSV and many more. It is beneficial to be aware
of routines to handle importing and exporting text files as VBA can use them as

an input / output between systems.

Importing a Text File

This procedure allows you to import data from a delimited text file. Each line in
the text file is written to one row in the worksheet. Items in the text file are
separated into separate columns on the worksheet row based on the character

you specify.

Minimum code required to import a text delimited file:

With ActiveSheet.QueryTables.Add(Connection:="TEXT;C:\VBA\EmployeeData.txt",
Destination:=Range("A1"))
.TextFileStartRow = 1
.TextFileCommaDelimiter = True
.Refresh BackgroundQuery:=False
End With

FileStream

Use the FileStream class to read from, write to, open, and close files on a file
system, and to manipulate other file-related operating system handles, including

pipes, standard input, and standard output.

FileStream buffers input and output for better performance.

FileStream can be used across different VBA models (Excel, Word, Outlook).

www.MicrosoftTraining.net 0207 987 3777 @@@ 51

FileStream needs to be loaded from the VBA Library before use.

e To reference this file, load the Visual Basic Editor (ALT-F11)

e Select Tools - References from the drop-down menu

e Alistbox of available references will be displayed

e Tick the check-box next to 'Microsoft Scripting Runtime'

e The full name and path of the scrrun.dll file will be displayed below the listbox

e Click on the OK button

The two most useful lines of code are

FileSystemObject.OpenTextFile

FileSystemObject.CreateTextFile

To read in and create a text file, respectively.

52 @@@ 0207 987 3777 www.MicrosoftTraining.net

Unit 7 - Working with Procedures and Parameters

In this unit you will learn how to:
» Passing arguments
» Use optional arguments

» Passing arguments ByVal & ByRef

Procedure Arguments

There are two types of procedure; sub procedures and function procedures. The
difference between them is that function procedures return values, and sub
procedures do not. Both sub procedures and function procedures accept
arguments. An argument is simply a piece of information that the procedure is to

process.

Passing Arguments

The arguments of a procedure are defined within the brackets after the

procedure’'s name. They are then processed within the procedure.

The following function accepts 2 string variables and then concatenates them

together.

Function StringJoiner(Name1 As String, Name2 As String) As String

StringJoiner = Name1 & Name2

End Function

www.MicrosoftTraining.net 0207 987 3777 @@@ 53

It is then called from the following sub procedure, with the two arguments

defined.

Sub RunStringJoiner()

Dim strResult As String

strResult = StringJoiner("Stephen ", "Williams")

MsgBox strResult

End Sub

54 @@@ 0207 987 3777

www.MicrosoftTraining.net

Optional Arguments

You can specify that some or all of the arguments in a procedure are optional.

This procedure has an optional argument strMessage

Sub OptArgument(Optional strMessage As String)

If strMessage <> "" Then

MsgBox strMessage

Else

MsgBox "I have nothing to say'

End If

End Sub

It is called from the following procedure. The first line returns a message box with
the word argument value hello as the message. The second has no value for the

argument and returns the message “I have nothing to say”.

Sub CallOptArg()

www.MicrosoftTraining.net 0207 987 3777 @@@ 55

En

Call OptArgument("Hello")

Call OptArgument

d Sub

000

0207 987 3777

www.MicrosoftTraining.net

Default Values

It is common to include a default value with an optional argument. This will be

the value of the argument if it is omitted when the procedure is called.

Sub OptArgument(Optional strMessage As String = “I have nothing to say”)

MsgBox strMessage

End Sub

The above procedure has exactly the same results as the previous example, but is

clearly a lot simpler to code and understand.

Passing arguments by value and reference

By default, arguments in VBA are passed by reference. This means that if you pass
a variable as an argument from one procedure to another then the called
procedure is working with the exact same copy of the variable as the calling
procedure. When you pass a variable by value, then the calling procedure makes
a copy of the variable, hands that to the called procedure; but retains the original
itself. As a result, the variable in the calling procedure is unaffected by the

changes made in the calling procedure.

The following procedure sets a variable intVar to the value of 10 and then passes
it to another procedure by reference. This procedure adds 10 to it and hands it

back, where the final value of 20 is displayed in a message box.

www.MicrosoftTraining.net 0207 987 3777 @@@ 57

Sub PassByRef()

Dim intVar As Integer

intVar = 10

Call RecByRef(intVar)

MsgBox intVar

End Sub

v 900

0207 987 3777

www.MicrosoftTraining.net

Sub RecByRef(IntArgument As Integer)

IntArgument = IntArgument + 10

End Sub

In the following example the intVar is passed by value to the sub RecByRef. Here
a copy of the variable is processed, which means it is not passed back to the

calling procedure. As a result the message box returns the value 10

Sub PassByVal()

Dim intVar As Integer

intVar = 10

Call RecByVal(intVar)

MsgBox intVar

End Sub

www.MicrosoftTraining.net 0207 987 3777 @@@ 59

Sub RecByVal(ByVal intArgument As Integer)

intArgument = intArgument + 10

End Sub

The key is the argument in the called procedure
Sub RecByVal(ByVal intArgument As Integer)

The byVal keyword specifies that the argument has been passed by value; that is
that it is a copy and that the original value will be retained after the called

procedure has completed.

60 @@@ 0207 987 3777 www.MicrosoftTraining.net

Unit 8 - Active X Data Objects

In this unit you will learn how to:
» Understand ADO (Active X Data Object)
» Use then connection object and the recordset object

= Create a universal data link tool

Microsoft's ActiveX Data Objects (ADO) is a set of objects for accessing data
sources. It provides a layer between VBA and the OLE DB, for example an Access

Database.

ADO allows a developer to write programs that access data without knowing how
the database is implemented. You must be aware of your database for connection
only. No knowledge of SQL is required to access a database when using ADO,

although you can use ADO to execute arbitrary SQL commands.

Key Objects

There are two key objects that concern us; the Connection Object and the

Recordset Object.

The Connection Object is the link between your Excel Spreadsheet and the
database itself. The link must be opened initially, it must be closed when you're
finished, and it has varying qualities. These qualities are the properties and

methods of the Connection Object.

The Recordset is the object you're going to be doing almost all of your work with.
A RecordSet object is a container for what is called a Cursor. A cursor is a

temporary table, which is constructed by performing a query on a table in a
www.MicrosoftTraining.net 0207 987 3777 @@@ 61

database. It doesn't exist in a file; it exists in memory, but other than that, it has all
the characteristics of a database table. It has rows (records) and columns (fields),

and the rows and columns have properties of their own.

The Connection Object
The connection object has a child object known as the connection string. The
connection string provides the path to the database, together with additional

information concerning the database’s properties.

The following code creates a constant to take the required connection string. It
then creates an ADODB connection object and then sets that object’s connection
string to the defined constant. The connection is then opened, using the

connection string’s open method.

Const ConnString = "Provider=Microsoft.Jet. OLEDB.4.0;Data
Source=D:\Documents and Settings\Storage\Work\Access\Simulated
Server\Northwind 2003v2.mdb;Persist Security Info=False"

Dim Connection As ADODB.Connection
Connection.ConnectionString = ConnString

Connection.Open

62 @@@ 0207 987 3777 www.MicrosoftTraining.net

The RecordSet Object
The RecordSet Object is used to represent a table or query in the database
defined by the connection string. An object variable is defined as an ADODB

RecordSet and is then set to the required table using an SQL statement.

The Recordset can then be manipulated with the following methods and

properties.
MoveFirst Move to first record
MoveNext Move to next Record

MovePrevious | Move to previous Record

Movelast Move to last Record

Edit Edit current record

AddNew Add new record

Update Update changes

Fields() Used to specify a particular field in the current record either

by index number or name

EOF Specifies whether the cursor is at the end of the file

BOF Specifies that the cursor is at the beginning of the file

The following code follows on from that shown for the connection object it opens
the customer’s table as a RecordSet, moves to the first record and then cycles
through to the end of the file, writing the customer name to a cell in the active

worksheet.

www.MicrosoftTraining.net 0207 987 3777 @@@ 63

Const SQL = "SELECT * FROM customers"
Set rstCustomer = Connection.Execute(SQL)
With rstCustomer
.MoveFirst
Sheets(1).Range(“a1”).select
Do While Not .EOF
Activecell.value = .Fields("CompanyName")
.MoveNext
Activecell.Offset(1,0).Select
Loop

End with

64 @@@ 0207 987 3777

www.MicrosoftTraining.net

A word about the connection string

The connection string can often be difficult to code correctly. Fortunately there
exists a simple technique to define the string, which involves creating a GUI tool
that allows you to browse for the source file and then automatically calculate the

connection string.

Create an empty text file and save it with the extension .udl. It will then open as a

dialog box.

=0 Data Link Properties

Provider Ennnectinn] .-'l'-.dvanceu:l] &l l

Select the data you want bo connect to;

OLE DB Provider(s]

Microsaft Jet 4.0 OLE DB Proswider
Microzoft Office 12.0 Access: Databaze Engine OLE DB Provide
Microzoft OLE DB Provider for Analysis Services 3.0

Microsaoft OLE DB Prowider For Data Mining Services

Microzoft OLE DB Pravider for Indexing Service

Microzoft OLE DB Provider for Intermet Publizhing

Microsoft OLE DB Provider for QDEBC Drivers

Microzoft OLE DB Prowider for OLAF Services 8.0

Microsaoft OLE DB Provider for Oracle

Microsoft OLE DB Provider for Search

Microsoft OLE DB Provider for SOL Server

Microzoft OLE DB Simple Provider

M50 ataShape

OLE DB Provider for Microzaft Directon) Services

SOL Mative Client

4 >

0k, Cancel | Help |

On the provider tab select the appropriate OLE DB Provider.

www.MicrosoftTraining.net 0207 987 3777 @@@ 65

On the connection tab, click the browse button and select the required database

B3 Data Link Properties

Provider Connectian l.ﬂ.dvanced] Al]

Specify the following to connect to Access data;

1. Select or enter a databaze name:

Simulated S erver'Morthiwind 2003

2. Enter information ko log on to the databaze:

Ilzer name: |.-’-'-.|:|min

[v Blank pazzword [Allow saving pazsward

T est Connection
k. | Cancel | Help |

Then close the dialog box and open the file using notepad. Within the file you will

see the connection string clearly labeled.

66 @@@ 0207 987 3777 www.MicrosoftTraining.net

B test - Notepad

Fie Edt Format view Help

[oTedh]
3 Everything after this Tine is an OLE 0B fnitstring
gvider=Microsoft.Jet OLEDE.4.0;Data sources=D:\Documents and Settings®

You can the copy and paste the code into your procedure.

www.MicrosoftTraining.net

0207 987 3777 @@@ 67

Unit 9 - Creating Add-Ins

In this unit you will learn how to:

When we create a customised function, that function will typically only be
available within that workbook. To make the function available to all workbooks,

we must create and then open an Add-In file.

1. Create all the required functions in a separate workbook. This workbook

should contain no data as it is sole purpose is to hold the functions
2. The file should then be saved and the file type should be Excel AddIn

3. Itis then necessary to install the Addin file.

| €] Micrasoft .
4] fle Edt Vew Imwem Fomst | ook | Dsta Window Help

< » n)\Sheetl [Sheatz / Sheet3 / I

4. Click on the office button/file tab, select Excel options and click on the
Addins command. Alongside manage click “Go” and then select the
required AddIn

68 @@@ 0207 987 3777 www.MicrosoftTraining.net

7

S gl

Sort & Find &
F elect ~

ar ¥

View and manage Microsoft Office add-ins.

=5

" 2 Clear~

ce\Office12\Libran/\SOLVER\SOLVER XLAM Excel Add-in

osoft Office\Officel 2\LibraryAnalysis\ANALYS32. AL

s tools for statistical and engineering snalysis

VBA Password Protection

When we write VBA code it is often desirable to have the VBA Macro code not
visible to end-users. This is to protect your intellectual property and/or stop users

messing about with your code.

To protect your code, from within the Visual Basic Editor

x|l o Open the Tools Menu

General Probection I

—Lock project

™ Lock project For viewing

e Select VBA Project Properties

—Password ko view project properties

passvord | The Project Properties dialog box

Confirm password I d p pea IS.

Ok Cancel Help

e Click the Protection page tab

www.MicrosoftTraining.net 0207 987 3777 @@@ 69

e Check "Lock project for

viewing"

e Enter your password and again

to confirm it.

e C(Click OK

After doing this you must Save and Close the Workbook for the protection to
take effect.

The safest password to use is one that uses a combination of upper, lower case

text and numbers. Be sure not to forget it.

Unit 9 - About Macro Security

In this unit you will learn how to:
» Set security level

» Add a password to the code

In Excel, you can set a macro security level to control what happens when you
open a workbook that contains a macro.

Macro security settings and their effects

The following list summarizes the various macro security settings. Under all
settings, if antivirus software that works with 2007 Microsoft Office system is

70 @@@ 0207 987 3777 www.MicrosoftTraining.net

installed and the workbook contains macros, the workbook is scanned for known
viruses before it is opened.

Disable all macros without notification Click this option if you don't trust
macros. All macros in documents and security alerts about macros are disabled. If
there are documents that contain unsigned macros that you do trust, you can put

those documents into a trusted location.

Disable all macros with notification This is the default setting. Click this option
if you want macros to be disabled, but you want to get security alerts if there are
macros present. This way, you can choose when to enable those macros on a case

by case basis.

Disable all macros except digitally signed macros This setting is the same as
the Disable all macros with notification option, except that if the macro is digitally
signed by a trusted publisher, the macro can run if you have already trusted the
publisher. If you have not trusted the publisher, you are notified. That way, you
can choose to enable those signed macros or trust the publisher. All unsigned

macros are disabled without notification.

Enable all macros (not recommended, potentially dangerous code can run) Click
this option to allow all macros to run. Using this setting makes your computer

vulnerable to potentially malicious code and is not recommended.

Trust access to the VBA project object model This setting is for developers
and is used to deliberately lock out or allow programmatic access to the VBA
object model from any Automation client. In other words, it provides a security
option for code that is written to automate an Office program and
programmatically manipulate the Microsoft Visual Basic for Applications (VBA)
environment and object model.

www.MicrosoftTraining.net 0207 987 3777 @@@ 71

Change Macro Security Settings

You can change macro security settings in the Trust Center, unless a system
administrator in your organization has changed the default settings to prevent
you from changing the settings.

1. On the Developer tab, in the Code group, click Macro Security.

2. In the Macro Settings category, under Macro Settings, click the option that
you want.

NOTE Any changes that you make in the Macro Settings category in Excel apply
only to Excel and do not affect any other Microsoft Office program.

72 @@@ 0207 987 3777 www.MicrosoftTraining.net

Appendix
Class Modules

What can be done with Class Modules?

Class modules allow you to create and use your own object types in your

application. This implies the following;

* You can easily write code that works with any workbooks that do not have any

code.

= Two or more procedures for the event of a command button can be

consolidated in one

= The code is easy to use by concealing logic and data.

Why use Class Modules?

Classes make your code:

= Development simpler
* More manageable
= Self-documenting

= Easier to maintain

What is a Class?

A Class is a Blueprint or template of an Object.

www.MicrosoftTraining.net 0207 987 3777 @@@ 73

In Excel VBA, an Object can mean Workbooks, Worksheets, User forms and
Controls etc. Normally an Object has Properties or Methods. A Property stands for
Data that describes the Object, and a Method stands for an action that can be

ordered to the object.

Properties and Methods of the Object depend on the kind of Object.

For Example;
Worksheet (1).Select

... selects the first worksheet in the workbook. Select is a method of the worksheet

object.

74 @@@ 0207 987 3777 www.MicrosoftTraining.net

How Does a Class Module Work?

A Class Module is a place where a Class is defined. The procedures in a class
module are never called directly from other modules like the procedures placed

in the standard modules.

In the view of a standard module, the class module doesn't exist.

The thing that exists in the view of a standard module is an instance of the object
generated by the class defined by the class module. The methods and procedures

of the class are defined within the class module.

Key Elements in a class module

The class module defines all the properties and methods associated with the
class. In the example below the “customer” class has two properties associated

properties; Name and Main Address.

These are defined by the Property Get and Property let Procedures (see below).

The Customer ID is calculated by taking the leftmost 3 characters from the
customer’'s Name and concatenating that with the 5 leftmost characters from the
main Address. This is the result of the method GetCustomerlD, and is defined in a

function in the class module

Property Get and Let Procedures

A property is implemented using a property let and a property get procedure.
When someone sets a value for a property the property let procedure is called

with the new value. When someone reads the value of a property the property

www.MicrosoftTraining.net 0207 987 3777 @@@ 75

get procedure is called to return the value. The value is stored as an internal

private variable.

Read only properties can be created by implementing a property get procedure

without a corresponding property let procedure.

76 @@@ 0207 987 3777 www.MicrosoftTraining.net

Example of a Class Module

Option Explicit
Private strName As String
Private strAddress As String

Public Property Get Name() As String
Name = strName

End Property

Public Property Let Name(ByVal value As String)
strName = value

End Property

Public Function GetCustomerlID()
GetCustomerl|D = Left(strName, 3) & Left(strAddress, 5)

End Function

Public Property Get MainAddress() As String
MainAddress = strAddress

End Property

www.MicrosoftTraining.net 0207 987 3777 @@@ 77

Public Property Let MainAddress(ByVal value As String)
strAddress = value

End Property

78 @@@ 0207 987 3777

www.MicrosoftTraining.net

Referring to user defined Objects in Code

This simply involves creating an instance of the Class in Code and then

manipulating it is the way you would any other object.

The following code would be placed in a standard module, and refers to the

customer object defined previously.

Option Explicit
Dim aCustomer As Customer (1)
Sub TestCustomer()
Set aCustomer = New Customer (2)
aCustomer.Name = "Evil Genius" (3)
aCustomer.MainAddress = "123 the Hollowed out Volcano" (4)
MsgBox "Company ID is " & vbCrLf & aCustomer.GetCustomerID() (5)

End Sub

Line 1 defines an object variable as a Customer variable, and line 2 sets it as a new
customer object. Line 3 assigns a value to its name property and line 4 a value to

its Main Address property.

Line 4 uses the GetCustomerlD Method to generate the CustomerlD value and

returns it in a message box.

www.MicrosoftTraining.net 0207 987 3777 @@@ 79

Using IntelliSense™

Microsoft IntelliSense is a convenient way to access descriptions of objects and
methods. It speeds up software development by reducing the amount of name
memorization needed and keyboard input required. Once a class is defined in a
class module, Intellisense will automatically provide drop down lists showing the
methods and properties of objects the names of which have been entered into

the VBE.

7 Microsoft Visual Basic - Class Modules 2.xIsm [design] - [Module1 (Code)]

@) File Edit View Inset Fomat Debug Run Iools Adddns Window Help Type a question for help == B X
HE- %Ak 9 b @k & F W | @ 13, cots -

e <] [romrmmer r
=2 E . =
[= &% vBAProject {Class Modules 2.xlsm) =

Option Explicit

= 3 Microsoft Excel Objects Dim aCustomer is Customer
EF) Sheet1 (Sheet1) Dim theCustomers is Hew Customers
5] Sheet (Sheet2) Const ConnString = "Provider=Microsoft.Jet.OLEDE.4.0;Data Source=D:iDocuments and Settings)StoragelWork)lccess)Simul
5] Sheet3 (Sheet3) Dim rstCustomer Ls LDODE.Recordset
467 Thisrorkbook Const $QL = "SELECT # FROM customers"

= 3 Modules
2 Modulet Sub TestCustomer |}

= 5 Class Modules
£ Customer Set aCustomer = Hew Customer

£ Customers

aCustomer .|
- GetCusiomenD]
EE' MainAddress
e8! Name
End Sub -

Sub TestCustomercollectioni

Dim Connection s ADODE.Connection
Set Connmection = New ADODE.Connection
Connection.ConnectionString = ConnString
Connection.Open

Set rItCustomer = Connection.Exscute (SQL

Dim 1 A= Long

For i = theCustomers.Count To 1 Step -1
[Properties - Modulel El »

[Module1 Madue | Call theCustomers.Remove (i)

alphabetic | categorized | Hext
ext 1

Modle
With rstCustomer
==« »

80 @@@ 0207 987 3777 www.MicrosoftTraining.net

Programming Techniques

Writing effective code is both a science and an art. There are obviously rules of
logic and syntax that define what will and will not work. Outside of this however,
there are usually a multiplicity of ways to achieve a particular end, and as your
experience grows you will find a style that suits you. However there are various
conventions and best practises that when followed will make your code simpler

and more efficient.

Best Practice for Excel Programming

When writing VBA code for Excel, it is best whenever possible to make use of
Excel’s built in functionality rather than trying to replicate it in your code. For
example, if you were working with a list and wanted to place subtotal within it at

the end of various groups, you could:

1. Write code that inserts a blank row at the end of each group and then insert a

function to total the rows above it.

2. Alternatively, you could use the subtotalling method of the current region to

accomplish the same end.

The later technique is the more efficient as it is briefer, easier to understand and
executes more quickly. There are also associated methods for removing the

subtotals.

Sub SubTotals()
www.MicrosoftTraining.net 0207 987 3777 @@@ 81

Range("A6").CurrentRegion.Sort key1:=Range("a7:a41"), Header:=xIYes

Range("A6").CurrentRegion.Subtotal Groupby:=1, Function:=xISum, _
TotallList:=Array(6, 11, 16)

End Sub

The code above sorts a database, and then inserts subtotals based on the sorted

column.

82 @@@ 0207 987 3777 www.MicrosoftTraining.net

