

Rev 2-1Rev

2-1

MicrosoftTraining.net

Access
VBA Introduction

Courses never

Cancelled

24 Months

Online Support

12+ Months

Schedule

UK Wide

Delivery

Accredited Learning Provider
Certified Silver Partner

Name

Address

Welcome to Your Access VBA Introduction Training Course

 The VBA environment

 Create Sub procedures and Functions

 Understand Object in Object Oriented Programming

 Understand Variables and Constants

 Loops & Decision code

 Error Handling and Debugging

Working with recordset (ADO & DAO)

www.MicrosoftTraining.net 0207 987 3777 i

Contents

Unit 1 The VBA Environment .. 1

Introducing Visual Basic For Applications .. 1

Understanding the Development Environment ... 2

Using Help .. 3

Closing the Visual Basic Editor ... 3

Unit 2 Developing with Procedures and Functions .. 4

Understanding and Creating Modules .. 4

Defining Procedures ... 4

Naming Procedures .. 5

Creating a Sub-Procedure .. 5

Creating a Function Procedure ... 6

Calling Procedures .. 8

Using the Immediate Window to Call Procedures .. 9

Working Using the Code Editor .. 10

Unit 3 Understanding Objects .. 14

Defining Objects ... 14

Examining the Access Object Hierarchy ... 15

Defining Collections .. 16

Referencing Objects in a Collection.. 16

Using The Object Browser ... 17

Working With Properties ... 19

The With Statement ... 19

Creating An Event Procedure .. 21

Unit 4 Using Intrinsic Functions, Variables and Expressions 22

Defining Expressions and Statements .. 22

Expressions ... 22

Statements .. 23

How to Declare Variables .. 23

Naming Variables ... 24

Programming with Variable Scope .. 29

Harnessing Intrinsic Functions ... 31

Defining Constants and Using Intrinsic Constants... 31

Adding Message Boxes .. 33

Return Values ... 37

Using Input Boxes ... 38

How To Declare And Use Object Variables ... 39

Unit 5 Debugging the Code .. 41

ii 0207 987 3777 www.MicrosoftTraining.net

Understanding Errors ... 41

Using Debugging Tools .. 43

Identifying the Value of Expressions .. 44

Setting Breakpoints .. 44

Unit 6 Handling Errors ... 47

Defining VBA's Error Trapping Options .. 47

Capturing Errors with the On Error Statement ... 49

Determining the Err Object ... 50

Coding An Error-Handling Routine .. 50

Unit 7 Managing Program Execution ... 53

Defining Control-Of-Flow structures ... 53

Using Boolean Expressions .. 53

Using the If...End If Decision Structures .. 55

Using the Select Case...End Select Structure ... 57

Using the Do...Loop Structure .. 58

Using the For...Next Structure .. 59

Using the For Each...Next Structure .. 59

Guidelines for Use of Control-Of-Flow Structures.. 60

Unit 8 Harnessing Forms and Controls .. 61

Defining Forms ... 61

Using Form Properties, Events and Methods ... 63

Understanding Controls ... 65

Naming Conventions .. 66

Setting Control Properties in the Properties Window ... 67

Using the Label Control .. 68

Using the Text Box Control.. 68

Using Option Button Controls.. 70

Setting the Tab Order .. 71

How to Launch a Form in Code ... 72

Unit 9 Introduction to Data Access Objects .. 74

Critical objects .. 74

Principle Methods of the RecordSet Object ... 75

Unit 10 Introduction to ADO (ActiveX Data Object) 76

Critical objects .. 76

Principle Methods of the RecordSet Object ... 78

Some Examples how ADO code can look like: ... 79

Quick reference: Access shortcuts .. 82

www.MicrosoftTraining.net 0207 987 3777 1

Unit 1 The VBA Environment

Introducing Visual Basic For Applications
Visual Basic for Applications or VBA is a development environment built into the

Microsoft Office Suite of products.

VBA is an Object Oriented Programming (OOP) language. It works by manipulating

objects. In Microsoft Office the programs are objects.

In Access worksheets, tables, forms, reports and queries are also objects.

In VBA the object is written first

I’m fixing house number 42 = .House.42.Fix

 House 42 Fix

English .noun .noun .verb

VBA .object .child object .method

When working in VBA tell Access exactly what to do. Don’t assume anything.

2 0207 987 3777 www.MicrosoftTraining.net

Understanding the Development Environment

Title bar, Menu bar

and Standard

toolbar

The centre of the Visual basic environment. The

menu bar and toolbar can be hidden of customized.

Closing this window closes the program.

Project Explorer Provides an organized view of the files and

components belonging to the project.

If hidden the Project Explorer can be displayed by

pressing Ctrl + R

Properties Window Provides a way to change attributes of forms and

controls (e.g. name, colour, etc). If hidden press F4

to display.

Code Window Used to edit the Visual basic code. Press F7 and it

will open an object selected in Project Explorer.

Close the window with the Close button that

appears on the menu bar.

Properties

Window

www.MicrosoftTraining.net 0207 987 3777 3

Using Help
If the Visual Basic Help files are installed, by pressing F1, a help screen displays

explaining the feature that is currently active:

Alternatively use the Ask a Question box on the menu bar to as a quick way to

find help on a topic.

Closing the Visual Basic Editor
To close the Visual Basic Editor use one of the following:

 Open the File menu; select Close and Return to

Microsoft Access

OR

 Press Alt + Q

OR

 Click Close in the title bar.

4 0207 987 3777 www.MicrosoftTraining.net

Unit 2 Developing with Procedures and Functions

Procedure is a term that refers to a unit of code created to perform a specific

task. In Access, procedures are stored in objects called Modules.

In this unit we will look at both Modules and Procedures.

Understanding and Creating Modules
Standard modules can be used to store procedures that are available to all objects

in your application

Within a project you can create as many standard modules as required. You should

store related procedures together within the same module.

Standard modules are also used to declare global variables and constants.

To create a standard module in the VB Editor:

 Display the Properties window if necessary

 In the Properties window change the name of the module

Defining Procedures
A procedure is a named set of instructions that does something within the

application.

To execute the code in a procedure you refer to it by name from within another

procedure. This is known as Calling a procedure. When a procedure has finished

executing it returns control to the procedure from which it was called.

There are two genera types of procedures:

Sub procedures perform a task and return control to the calling

procedure

Function procedures perform a task and return a value, as well as control,

to the calling procedure

If you require 10 stages to solve a problem write 10 sub procedures. It is easier to

find errors in smaller procedures than in a large one.

The procedures can then be called, in order, from another procedure.

www.MicrosoftTraining.net 0207 987 3777 5

Naming Procedures
There are rules and conventions that must be followed when naming procedures

in Visual Basic.

While rules must be followed or an error will result, conventions are there as a

guideline to make your code easier to follow and understand.

The following rules must be adhered to when naming procedures:

 Maximum length of the name is 255 characters

 The first character must be a letter

 Must be unique within a given module

 Cannot contain spaces or any of the following characters: . , @ & $

() !

You should consider these naming conventions when naming procedures:

 As procedures carry out actions, begin names with a verb

 Use the proper case for the word within the procedure name

 If procedures are related try and place the words that vary at the end of the

name

Following these conventions, here is an example of procedure names:

PrintClientList

GetDateStart

GetDateFinish

Creating a Sub-Procedure
Most Access tasks can be automated by creating procedures. This can be done by

either recording a macro or entering the code directly into the VB Editor’s Code

window.

6 0207 987 3777 www.MicrosoftTraining.net

Sub procedures have the following syntax:

[Public/Private] Sub ProcedureName ([argument list])

Statement block

End Sub

Public indicates procedure can be called from within other modules. It is the

default setting

Private indicates the procedure is only available to other procedures in the same

module.

The Sub…End Sub structure can be typed directly into the code window or inserted

using the Add Procedure dialog box.

To create a sub procedure:

 Create or display the module to contain the new sub procedure

 Click in the Code window

 Type in the Sub procedure using the relevant syntax

Type in the word Sub, followed by a space and the Procedure name

Press Enter and VB inserts the parenthesis after the name and the End Sub

line.

Below is an example of a basic sub procedure:

Creating a Function Procedure
Function procedures are similar to built-in functions such as DateDiff(). They are

sometimes called user-defined function.

A function returns a value to the procedure that calls it. The value the function

generates is assigned to the name of the function.

Function procedures have the following syntax:

www.MicrosoftTraining.net 0207 987 3777 7

[Public/Private] Function FunctionName ([argument list]) [As <Type>]

[Statement block]

[FunctionName = <expression>]

End Function

Public indicates procedure can be called from within other modules. It is the

default setting

Private indicates the procedure is only available to other procedures in the same

module.

The As clause sets the data type of the function’s arguments and return value.

To create a function procedure:

 Create or display the module to contain the new Function procedure

 Click in the Code window

 Type in the Function procedure using the relevant syntax or use Add

Procedure

Type in the word Function followed by a space and the Function name

Press Enter and VB places the parenthesis after the name and inserts the End

Function line.

8 0207 987 3777 www.MicrosoftTraining.net

Below is an example of a basic function procedure:

Calling Procedures
A sub procedure or function is called from the point in another procedure where

you want the code to execute. The procedure being called must be accessible to

the calling procedure. This means it must be in the same module or be declared

public.

Below is an example of calls to Sub and Function procedures:

When passing multiple arguments (as in the function procedure above) always

separate them with commas and pass them in the same order as they are listed in

the syntax.

Auto Quick Info is a feature of the Visual Basic that displays a syntax box when

you type a procedure or function name.

The example below shows the tip for the Message Box function:

Arguments in square brackets are optional.

Function

procedure

Sub procedure

www.MicrosoftTraining.net 0207 987 3777 9

Values passed to procedures are sometimes referred to as parameters.

Using the Immediate Window to Call Procedures

The Immediate window is a debugging feature of Visual Basic. It can be used to

enter commands and evaluate expressions.

Code stored in a sub or function procedure can be executed by calling the

procedure from the Immediate window.

To open the Immediate window:

 Open the View menu

 Select Immediate window

OR

 Press Ctrl+G.

The Immediate window appears.

To execute a sub procedure:

 Type SubProcedureName ([Argument list])

 Press Enter.

10 0207 987 3777 www.MicrosoftTraining.net

To execute a function and print the return value in the window:

 Type ? FunctionName ([Argument list])

 Press Enter.

To evaluate an expression:

 Type ? Expression

 Press Enter.

Within the code, especially in loops, use the Debug.Print statement to display

values in the Immediate window while the code is executing. The Immediate

window must be open for this.

Working Using the Code Editor
The Code Editor window is used to edit Visual Basic code. The two drop down lists

can be used to display different procedures within a standard module or objects’

event procedures within a class module.

Below is an illustration of the code window:

Procedure View:

Displays

Procedure list Object list
Procedur

e

Full Module View:

Displays all the procedures

www.MicrosoftTraining.net 0207 987 3777 11

Object List

Displays a list of objects contained in the current module.

Procedure List Displays a list of general procedures in the current module

when General is selected in the Object list.

When an object is selected in the Object list it displays a list

of events associated with the object.

Setting Code Editor Options

The settings for the Code Editor can be changed. To do this:

 Open the Tools menu in the VB

Editor

 Select Options.

The Options dialog box appears:

The following are explanations of the Code Setting selections:

12 0207 987 3777 www.MicrosoftTraining.net

Auto Syntax

Check

Automatically displays a Help message when a syntax error is

detected. Message appears when you move off the code line

containing the error

Require Variable

Declaration

Adds the line Option Explicit to all newly created modules,

requiring all variables to be explicitly declared before they are

used in a statement.

Auto List

Members

Displays a list box under your insertion point after you type an

identifiable object. The list shows all members of the object class.

An item selected from the list can be inserted into your code by

pressing the Tab key

Auto Quick Info Displays a syntax box showing a list of arguments when a

method, procedure or function name is typed

Auto Data Tips Displays the value of a variable when you point to it with a mouse

during break mode. Useful for debugging.

Auto Indent Indent the specified amount when Tab is pressed and indents all

subsequent lines at the same level.

The Windows Settings selections are explained below:

Drag-and-Drop Text Editing Allows you to drag and drop code around the Code

window and into other windows like the Immediate

window.

Default to Full Module View Displays all module procedures in one list with

optional separator lines between each procedure.

The alternative is to show one procedure at a time,

as selected through the Procedure list.

Procedure Separator Displays a grey separator line between procedures if

Module view is selected

Editing Guidelines

Below are some useful guidelines to follow when editing code:

www.MicrosoftTraining.net 0207 987 3777 13

 If a statement is too long carry it over to the next line by typing a space

and underscore (_) character at the end of the line. This also works for

comments.

Strings that are continued require a closing quote, an ampersand (&), and a

space before the underscore. This is called Command Line Continuation.

 Indent text within control structures for readability. To do this:

 Select one or more lines

 Press the Tab key OR

 Press Shift + Tab to remove the indent.

 Complete statements by pressing Enter or by moving focus off the code

line by clicking somewhere else with the mouse or pressing an arrow key.

When focus is moved off the code line, the code formatter automatically

places key words in the proper case, adjusts spacing, adds punctuation and

standardizes variable capitalization.

It is also a good idea to comment your code to document what is happening in

your project. Good practice is to comment what is not obvious.

Start the line with an apostrophe (‘) or by typing the key word Rem (for remark).

When using an apostrophe to create a comment, you can place the comment at

the end of a line containing a code statement without causing a syntax error.

14 0207 987 3777 www.MicrosoftTraining.net

Unit 3 Understanding Objects

An object is an element of an application that can be accessed and manipulated

using Visual Basic.

Defining Objects

Objects are defined by lists of Properties, and Methods. Many also allow for

custom sub-procedures to be executed in response to Events.

The term Class refers to the general structure of an object. The class is a template

that defines the elements that all objects within that class share.

Properties

Properties are the characteristics of an object. The data values assigned to

properties describe a specific instance of an object.

A new Form in Access is an instance of a Form object, created by you, based on the

Form class. Properties that define an instance of a Form object would include its

Name, Caption, Size, etc.

Methods

Methods represent procedures that perform actions.

Printing a report, updating a record and running a query are all examples of actions

that can be executed using a method.

Events

Many objects can recognize and respond to events. For each event the object

recognizes you can write a sub procedure that will execute when the specific event

occurs.

A Form recognizes the Open event. Code inserted into the Open event procedure

of the Form will run whenever the Form is opened.

Events may be initiated by users, other objects, or code statements. Many objects

are designed to respond to multiple events.

www.MicrosoftTraining.net 0207 987 3777 15

Examining the Access Object Hierarchy
The Access Object Module is a set of objects that Access exposes to the

development environment. Many objects are contained within other objects. This

indicates a hierarchy or parent-child relationship between the objects.

The Application object represents the application itself. All other objects are below

it and accessible through it. It is by referencing these objects, in code, that we are

able to control Access.

Objects, their properties and methods are referred to in code using the “dot”

operator as illustrated below:

Some objects in the Access Object model represent a Collection of objects. A

collection is a set of objects of the same type.

The Forms collection in Access represents a set of all open Forms. An item in the

collection can be referenced using an index number or its name.

To view the entire Access Object model:

 Open the Help window

 Select the Contents tab

 Expand Programming Information

 Expand Microsoft Access Visual basic Reference

 Select Microsoft Access Object Model.

Parent

Object

Method of the Child

Object

Argument of the

Method

Me. cmbCombo1.

Child Object

Additem. “Item”

16 0207 987 3777 www.MicrosoftTraining.net

Defining Collections

A collection is a set of similar objects such as all open databases.

Many Access collections have the following properties:

Application Refers to the application that contains the collection

Count An integer value representing the number of items in the

collection.

Item Refers to a specific member of the collection identified by name

or position. Item is a method rather than a property

Some collections provide methods similar to the following:

Add Allows you to add items to a collection

Delete Allows you to remove an item from the collection by identifying

it by name or position.

Referencing Objects in a Collection

A large part of programming is referencing the desired object, and then

manipulating the object by changing its properties or using its methods. To

reference an object you need to identify the collection in which it’s contained.

The following syntax references an object in a collection by using its position. Since

the Item property is the default property of a collection there is no need to include

it in the syntax.

CollectionName(Object Index Number)

Forms(1)

Reports(7)

www.MicrosoftTraining.net 0207 987 3777 17

The following syntax refers to an object by using the object name. Again the Item

property is not necessary:

CollectionName(ObjectName)

Forms(“Employees”)

Reports(“Sales Report”)

Using The Object Browser
The Object Browser is used to examine the hierarchy and contents of the various

classes and modules.

The Object Browser is often the best tool to use when you are searching for

information about an object such as:

 Does an object have a certain property, method or event

 What arguments are required by a given method

 Where does an object fit in the hierarchy

To access the Object Browser:

In the Visual Basic Editor, do one of the following:

 Open the View menu

 Select Object Browser OR

 Press F2 OR

 Click the Object Browser icon.

The Object Browser dialog box appears.

18 0207 987 3777 www.MicrosoftTraining.net

The following icons and terms are used in the Object Browser:

Class Indicates a Class (Eg Form)

Property Is a value representing an attribute of a class (Eg. Name, Value)

Method Is a procedure that perform actions (Eg. Copy, Print Out,

Delete)

Event Indicates an event which the class generates (Eg Click,

Activate)

Constant Is a variable with a permanent value assigned to it (Eg vbYes)

Enum Is a set of constants

Module Is a standard module

To search for an object in the Object Bowser:

 Type in the search criteria in the Search Text box

 Click

To close the Search pane:

 Click

www.MicrosoftTraining.net 0207 987 3777 19

Working With Properties
Most objects in Access have an associated set of properties. During execution,

code can read property values and in some cases, change them as well.

The syntax to read an object’s property is as follows:

ObjectReference.PropertyName

Form.Name

The syntax to change an object’s property is as follows:

ObjectReference.PropertyName = expression

Form.Name = “Quarterly Sales 2006”

The With Statement

The With statement can be used to work with several properties or methods

belonging to a single object without having to type the object reference on each

line.

The With statement helps optimize the code because too many “dots” in the code

slows down execution.

The syntax for the With statement is as follows:

With ObjectName

<Statement>

End With

With recordset

 .movefirst

 .movenext

 .edit

End With

You can nest With statements if needed.

Make sure that the code does not jump out of the With block before the End With

statement executes. This can lead to unexpected results.

20 0207 987 3777 www.MicrosoftTraining.net

Working with Methods

Many Access objects provide public Sub and Function procedures that are callable

from outside the object using references in your VB code. These procedures are

called methods, a term that describes actions an object can perform.

Some methods require arguments that must be supplied when using the method.

The syntax to invoke an object method is as follows:

ObjectReference.Method [argument]

Forms(2).Open

Recordset.movelast

When calling procedures or methods that have arguments you have two choices

of how to list the argument values to be sent.

Values can be passed by listing them in the same order as the argument list. This

is known as a Positional Argument.

Alternatively you can pass values by naming each argument together with the value

to pass. This is known as a Named Argument. When using this method it is not

necessary to match the argument order or insert commas as placeholders in the

list of optional arguments

The syntax for using named arguments is as follows:

Argumentname:= value

The example shows the PrintOut method and its syntax:

Sub PrintOut([From],[To],[Copies],[Preview],[ActivePrinter],[PrintToFile],[Collate],

[PrToFilename])

The statements below show both ways of passing values when calling the PrintOut

method. The first passes by Position, the second by Naming.

www.MicrosoftTraining.net 0207 987 3777 21

Event Procedures

An event procedure is a sub procedure created to run in response to an event

associated with an object. For example run a procedure when a workbook opens.

Event procedure names are created automatically. They consist of the object,

followed by an underscore and the event name. These names cannot be changed.

Event procedures are stored in the class module associated with the object for

which they are written.

The syntax of the Activate Event procedure is as follows:

Private Sub Button_OnClick()

Creating An Event Procedure

To create an Event Procedure:

 Display the

code

window for

the

appropriate

class

module

 Select the

Object from

the Object

drop-down

list

 Select the

event from

the

Procedure

drop-down

list

 Enter the

desired

code in the

Event

Procedure

Object drop-

down list

Procedure drop-

down list shows all

the events for the

selected object

22 0207 987 3777 www.MicrosoftTraining.net

Unit 4 Using Intrinsic Functions, Variables and

Expressions

Defining Expressions and Statements
Any programming language relies on its expressions and the statements that put

those expressions to use.

Expressions

An expression is a language element that, alone or in combination represents a

value. The different expression types typical of Visual basic are as follows:

String Evaluates to a sequence of characters

Numeric Evaluates to anything that can be interpreted as a number

Date Evaluates to a date

Boolean Evaluates to True or False

Object Evaluates to an object reference

Expressions can be represented by any combination of the following language

elements:

Literal Is the actual value, explicitly stated.

Constant Represents a value that cannot be changed during the

execution of the program. (Eg. vbNo, vbCrLf)

Variable Represents a value that can be changed during the

execution of the program.

Function/Method

/Property

Performs a procedure and represents the resulting

value. This also includes self-defined functions

Operator Allows the combination of expression elements

+, - , * , / , >, <, =, <>

www.MicrosoftTraining.net 0207 987 3777 23

Statements

A statement is a complete unit of execution that results in an action, declaration or

definition.

Statements are entered one per line and cannot span more than one line unless

the line continuation character (_) is used.

Statements combine the language’s key words with expressions to get things done.

Below are some examples of statements:

txtSale.Name = “Quarterly Sales 2006”

Label(1).Caption = ActiveCell.Value

CurrentPrice = CurrentPrice * 1.1

How to Declare Variables

A variable is name used to represent a value. Variables are good at representing

values likely to change during the procedure. The variable name identifies a unique

location in memory where a value may be stored temporarily.

Variables are created by a Declaration statement. A variable declaration

establishes its name, scope, data type and lifetime.

The syntax for a Variable declaration is as follows:

Dim/Public/Private/Static VariableName [As <type>]

Dim EmpName as String

Private StdCounter as Integer

Public TodaysDate As Date

24 0207 987 3777 www.MicrosoftTraining.net

Naming Variables

To declare a variable you give it a name. Visual Basic associates the name with a

location in memory where the variable is stored.

Variable names have the following limitations:

 Must start with a letter

 Must NOT have spaces

 May include letters, numbers and underscore characters

 Must not exceed 255 characters in length

 Must not be a reserved word like True, Range, Selection

Assigning Values to Variables

An Assignment statement is used to set the value of a variable. The variable

name is placed to the left of the equal sign, while the right side of the statement
can be any expression that evaluates to the appropriate data type.

The syntax for a Variable declaration is as follows:

VariableName = expression

StdCounter = StdCounter + 1

SalesTotal = SalesTotal + txtSalesl.Value

Declaring Variables Explicitly

VBA does not require you to explicitly declare your variables. If you don't declare

a variable using the Dim statement, VBA will automatically declare the variable for

you the first time you access the variable. While this may seem like a nice feature,

it has two major drawbacks:

 It doesn't ensure that you've spelled a variable name correctly

 It declares new variables as Variants, which are slow

www.MicrosoftTraining.net 0207 987 3777 25

Using Dim, Public, Private and Static declaration statements result in Explicit

variable declarations.

You can force VBA to require explicit declaration be placing the statement Option

Explicit at the very top of your code module, above any procedure declaration.

With this statement in place, a Compiler Error - Variable Not Defined message

would appear when you attempt to run the code, and this makes it clear that you

have a problem. This way you can fix the problem immediately.

Although this forces you to declare variables, there are many advantages. If you

have the wrong spelling for your variable, VBE will tell you. You are always sure that

your variables are considered by VBE.

The best thing to do is tell the VBA Editor to include this statement in every new

module. See Setting Code Editor Options on Page 21.

Important Note

When you declare more than one variable on a single line, each variable must be

given its own type declaration. The declaration for one variable does not affect the

type of any other variable. For example, the declaration:

Dim X, Y, Z As Single

is NOT the same as declaration

Dim X As Single, Y As Single, Z As Single

It IS the same as

Dim X As Variant, Y As Variant, Z As Single

For clarity, always declare each variable on a separate line of code, each with

an explicit data type.

26 0207 987 3777 www.MicrosoftTraining.net

Determining Data Types

When declaring a variable you can specify a data type.

The choice of data type will impact the programs accuracy, efficiency, memory

usage and its vulnerability to errors.

Data types determine the following:

 The structure and size of the memory storage unit that will hold the

variable

 The kind and range of values the variable can contain. For example in the

Integer data type you cannot store other characters or fractions

 The operations that can be performed with the variable such as add or

subtract.

Important Info

If data type is omitted or the variable is not declared a generic type called Variant

is used as default.

Excessive use of the Variant data type makes the application slow because Variants

consume lots of memory and need greater value and type checks.

Numeric Data Types

Numeric data types provide memory appropriate for storing and working on

numbers. You should select the smallest type that will hold the intended data so

as to speed up execution and conserve memory.

Numeric operations are performed according to the order of operator precedence:

Operations inside parentheses () are performed first. Access evaluates the operators

from left to right.

The following numeric operations are shown in order of precedence and can be used in

with numeric data types.

Exponentiation (^) Raises number to the power of the exponent

Negation (-) Indicates a negative operand (as in –1)

Divide and Multiply (/ *) Multiply and divide with floating point result

www.MicrosoftTraining.net 0207 987 3777 27

Modulus (Mod) Divides two numbers and returns the remainder

Add and Subtract (+ -) Adds and subtracts operands

String Data Types

The String data type is used to store one or more characters.

The following operands can be used with strings:

Concatenation (&)
Combines two string operands. If an operand is

numeric it is first converted to a string-type Variant

Like LikePattern Provides pattern matching strings

VBA supports the following data types:

Data type Storage size Range

Boolean 2 bytes True or False

Byte 1 byte integer 0 to 255

Integer 2 bytes -32,768 to 32,767

Long

(long integer)

4 byte integer -2,147,483,648 to 2,147,483,647

Single 4 byte floating

point

Approximate range -3.40 x 1038 to 3.40

x 1038

Double 8 byte floating

point

-1.79769313486231E308 to

-4.94065645841247E-324 for negative

values;

 4.94065645841247E-324 to

1.79769313486232E308 for positive

values

28 0207 987 3777 www.MicrosoftTraining.net

Currency 8 bytes fixed point -922,337,203,685,477.5808 to

922,337,203,685,477.5807

String

(variable-

length)

10 bytes + 0 to approximately 2 billion characters

String

(fixed-length)

Length of string 1 to approximately 65,400 characters

Variant

(Numeric)

16 bytes Any numeric value up to the range of a

Double

Variant (String) 22 bytes + Same range as for variable-length

String

Decimal 12 byte

(Only used within a

Variant)

28 places to the right of the decimal;

smallest non-zero number is

+/-

0.0000000000000000000000000001

Date 8 byte floating

point

1 January 100 to 31 December 9999

Object 4 bytes An address reference to an Object

Important Info

For monetary values with up to 4 decimal places use the Currency data type.

Single and Double data types can be affected by small rounding errors.

A numeric variable of any type may be stored to a numeric variable of another type.

The fractional part of a Single or Double will be rounded off when stored to an

Integer type variable.

www.MicrosoftTraining.net 0207 987 3777 29

Programming with Variable Scope
The keywords used to declare variables, Dim, Static, Public or Private, define the

scope of the variable. The scope of the variable determines which procedures and

modules can reference the variable.

Procedure-Level Variables

These are probably the best known and widely used variables. They are declared

(Dim or Static) inside the Procedure itself. Only the procedure that contains the

variable declaration can use it. As soon as the Procedure finishes, the variable is

destroyed.

Module-Level Variables

These are variables that are declared (Dim or Private) outside the Procedure itself

in the Declarations section of a module.

By default, variables declared with the Dim statement in the Declarations section

are scoped as private. However, by preceding the variable with the Private

keyword, the scope is obvious in your code.

All variables declared at this level are available to all Procedures within the Module.

Its value is retained unless the variable is referenced outside its scope, the

Workbook closes or the End Statement is used.

Public Variables

These variables are declared at the top of any standard Public module. Public

variables are available to all procedures in all modules in a project

The Public keyword can only be used in the Declarations section

Public procedures, variables, and constants defined in other than standard or class

modules, such as Form modules or Report modules, are not available to

referencing projects, because these modules are private to the project in which

they reside.

Variables are processed in the following order:

1. Local (Dim)

2. Module-Level (Private, Dim)

3. Public (Public)

30 0207 987 3777 www.MicrosoftTraining.net

The diagram below illustrates how variables can be accessed across procedures,

modules and forms, based on the scope of each variable:

Each of the procedures can only see the variables as follows:

Procedure A can see: A1, A2, Mod1, X, Y

Procedure B can see: B1, Mod1, X, Y

Procedure C can see: C1, Frm1, X, Y

Procedure D can see: D1, D2, Frm2, X, Y

Module1

Public X

Private Mod1

Procedure A

Static A1

Procedure B

Dim B1

Form1

Public Y

Private Frm1

Form2

Private Frm2

 Procedure D

Static D1

Procedure C

Dim C1

www.MicrosoftTraining.net 0207 987 3777 31

Harnessing Intrinsic Functions

An intrinsic function is similar to a function procedure in that it performs a specific

task or calculation and returns a value. There are many intrinsic functions that can

be used to manipulate text strings, or dates, covert data or perform calculations.

Intrinsic functions appear as methods in the Object Browser. To view and use

them:

 Select VBA from the

Project/Library drop down

list.

 Select <globals> in the

Classes pane.

 Select the required intrinsic

function.

For further help on a particular function, display the Visual Basic Help window.

On the Contents tab:

 Expand Visual Basic Language Reference

 Expand Functions

 Expand the appropriate alphabet range

 Select the desired function.

Defining Constants and Using Intrinsic Constants

A constant is a variable that receives an initial data value that doesn’t change during

the programs execution. They are useful in situations where a value that is hard to

remember appears over and over. The use of constants can make code more

readable.

32 0207 987 3777 www.MicrosoftTraining.net

The value of the constant is also set in the declaration statement. Constants are

Private by default, unless the Public keyword is used.

The syntax of a Constant declaration is as follows:

[Public] [Private] Const ConstantName [<As type>] = <ConstantExpr>

Const conPassMark As String = “C”

Public Const conMaxSpeed As Integer = 30

Using Intrinsic Constants

VBA has many built-in constants that can be used in expressions. VBA constants

begin with the letters vb while constants belonging to the Access object library

begin with xl.

To access Intrinsic constants in the Object Browser follow the steps below:

 Select VBA from the

Project/Library drop down

list.

 Select the object you want to

use in the Classes pane e.g.

vbMsgBoxResult.

 Select the required intrinsic

function e.g. vbOK

www.MicrosoftTraining.net 0207 987 3777 33

Some useful Visual Basic constants are listed below:

Constant Equivalent to: Same as pressing:

vbCr

Carriage Return

vbTab

Tab character

vbLf

Soft return and linefeed

+
vbCrLf Combination of carriage return

and linefeed

vbBack

Backspace character

vbNullString

Zero length string “”

For a full list of Visual Basic Constants, search Help for VB Constants while in the

Visual Basic Editor.

Adding Message Boxes

The MsgBox Function can be used to display messages on the screen and

prompt for a user’s response.

The MsgBox Function can display a variety of buttons, icons and custom title bar

text.

The MsgBox Function can be used to return a constant value that represents the

button clicked by user.

The MsgBox Function syntax is as follows:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

34 0207 987 3777 www.MicrosoftTraining.net

MyResponse = MsgBox (“Print the new sales report?”, 36, _

“Print Sales Report”)

MyResponse = MsgBox (“Print the new sales report?”, _

vbYesNo + vbQuestion, “Print Sales Report”)

Both MsgBox Functions above produce a message box with 2 buttons, a text

message, an icon and a title as shown below:

Another example of using the message box is to return a value:

Sub Example()

Dim X As Integer

X = 2

MsgBox "The Value of X is " & Str(X)

End Sub

The Msgbox message must be a string (text), hence the Str() function is

required to convert an integer to a string which is concatenated with the first

string using the & operator.

www.MicrosoftTraining.net 0207 987 3777 35

The MsgBox Function has the components described below:

prompt Required. It is a string expression displayed as the message in the

dialog box. The maximum length of prompt is approximately 1024

characters. If prompt consists of more than one line, you can separate

the lines by concatenating and using carriage return code vbCrLf.

buttons Optional. Numeric expression that defines the set of command

buttons to display, the icon style to use, the identity of the default

button, and the modality of the message box. Can be specified by

entering a vbConstant, the actual numeric value of the constant or the

sum of constants. If omitted, the default value for buttons is 0

title Optional. String expression displayed in the title bar of the dialog box.

If you omit title “Microsoft Access” is the default title

helpfile Optional. String expression that identifies the Help file to use for the

input box. If helpfile is provided, context must also be provided.

context Optional. Numeric expression that identifies the appropriate topic in

the Help file related to the message box

The values and constants for creating buttons are shown below:

Constant Value Description

vbOKOnly 0 OK button only (default)

vbOKCancel 1 OK and Cancel buttons

vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons

vbYesNoCancel 3 Yes, No, and Cancel buttons

vbYesNo 4 Yes and No buttons

vbRetryCancel 5 Retry and Cancel buttons

The values for creating icons are shown below:

36 0207 987 3777 www.MicrosoftTraining.net

Constant Value Description

vbCritical 16 Display the Stop icon

vbQuestion 32 Display the Question icon

vbExclamation 48 Display the Exclamation icon

vbInformation 64 Display the Information icon

The values for setting the default command button are shown below:

Constant Value Description

vbDefaultButton1 0 First button set as default (default)

vbDefaultButton2 256 Second button set as default

vbDefaultButton3 512 Third button set as default

vbDefaultButton4 768 Fourth button set as default

The values for controlling the modality of the message box are shown below:

Constant Value Description

vbApplicationModal 0 Application modal message box

(default)

vbSystemModal 4096 System modal message box

vbMsgBoxHelpButton 16384 Adds Help button to the message

box

VbMsgBoxSetForeground 65536 Specifies the message box window

as the foreground window

To display the OK and Cancel buttons with the Stop icon and the second button

(Cancel) set as default, the argument would be:

273 (1 + 16 +256).

It is easier to sum the constants than writing the actual values themselves:

vbOKCancel, vbCritical, vbDefaultButton2.

www.MicrosoftTraining.net 0207 987 3777 37

When adding numbers or combining constants, for the button argument, select

only one value, from each of the listed groups.

Return Values

The MsgBox Function returns the value of the button that is clicked. Again this

can be referenced by the number or the corresponding constant.

The Return values of the corresponding constants are as follows:

Button Clicked Constant Value Returned

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The return value is of no interest when the MsgBox only displays the OK button.

In this case just call the MsgBox Function with the syntax used to call a sub

procedure as shown below:

MsgBox (“You must enter a number”, vbOKOnly, “Attention”)

Or

MsgBox “You must enter a number”

38 0207 987 3777 www.MicrosoftTraining.net

Using Input Boxes

The InputBox Function prompts the user for a piece of information and returns

it as a string.

The syntax of a InputBox Function is as follows:

InputBox (prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

strEmpID = InputBox (“Please enter your Employee ID :”, “Employee ID

Entry”)

In the example the return value of the function is being stored in a variable called

strEmpID.

If OK is clicked, the function returns the contents of the text box or a zero-length

string, if nothing is entered.

If the user clicks Cancel, it returns a zero-length string, which may cause an error

in the procedure if a value is required.

www.MicrosoftTraining.net 0207 987 3777 39

The ImputBox Function has the components described below:

prompt Required. String expression displayed in the dialog box. The

maximum length of prompt is approximately 1024 characters.

title Optional. String expression displayed in the title bar of the dialog

box. If you omit title “Microsoft Access is the default title.

default Optional. String expression displayed in the text box as the

default response. If you omit default, the text box is displayed

empty.

xpos Optional. Numeric expression that specifies, in twips, the

horizontal distance of the left edge of the dialog box from the left

edge of the screen. If xpos is omitted ypos must also be omitted.

ypos Optional. Numeric expression that specifies, in twips, the vertical

distance of the upper edge of the dialog box from the top of the

screen.

helpfile Optional. String expression that identifies the Help file to use for

the Input box. If helpfile is provided, context must also be

provided.

context Optional. Numeric expression that identifies the appropriate topic

in the Help file related to the Input box

A twip is equal to 1/20th of a point.

How To Declare And Use Object Variables

You can also use variables to reference objects in order to work with their

properties, methods and events. Any Access object can be represented and

accessed using a variable name.

The Object Variable syntax is as follows:

Dim/Public/Private/Static VariableName [As <Objecttype>]

Dim Rst As DAO.Recordset

Public FormVar As Form

40 0207 987 3777 www.MicrosoftTraining.net

Assigning values to object variables requires the keyword Set:

Set VariableName = Objectname

Set rst = db.openrecordset(“Employees”)

Set FormVar = “Sales View”

Once an object is assigned to an object variable, the object can be referenced by

its variable name. Object variables are used to avoid typing lengthy object

references.

www.MicrosoftTraining.net 0207 987 3777 41

Unit 5 Debugging the Code

Understanding Errors
When developing code, problems will always occur. Wrong use of functions,

overflow and division by zero are some of the things that will cause an error and

not produce the intended results.

Errors are called Bugs. The process of removing bugs is known as Debugging. VBA

provides tools to help see how the code is running.

There are three general types of errors:

Syntax Errors

Syntax errors occur when code is entered incorrectly and is typically discovered by

the line editor or the compiler.

 Discovered by Line Editor: When you move off a line of code in the Code

window, the syntax of the line is checked. If an error is detected the whole

line turns red by default indicating the line needs to be changed.

 Discovered by Compiler: While the line editor checks one line at a time,

the compiler checks all the lines in each procedure and all declarations

within the project. If Option Explicit is set, the compiler also checks that

all variables are declared and that all objects have references to the correct

methods, properties and events. The compiler also checks that all required

statements are present, for example that each If has an End If. When the

compiler finds an error it displays a message box describing the error.

Run-Time Errors

When a program is running and it encounters a line of code that it cannot be

executed, a run-time error is generated. These errors occur when a certain

condition exists. A condition could run fine 10 times but cause an error on the

11th. When a run-time error occurs, execution is halted a message box appears

defining the error.

Logic Errors

Logic errors create unexpected outcomes when a procedure is executed. Unlike

syntax or run-time errors the application is not halted and you are not shown the

offending line of code. These errors are more difficult to locate and correct.

42 0207 987 3777 www.MicrosoftTraining.net

Minimizing Errors

Here are a few suggestions to help you minimize or make it easier to find errors

in your code:

 Add comments to code explaining what a line of code or procedure is

meant to do. This is important if other people are going to look at the

code.

 Create meaningful variable names. Use prefixes to identify data or object

type.

 Any time you use division that contains a variable in the denominator, test

the denominator to ensure that it doesn’t equal zero

 Force variable declarations with the use of Option Explicit. A simple

misspelling of a variable name will lead to a logic error, not a run-time

error.

 Give procedures names that clearly describe what they do.

 Keep procedures as short as possible, giving it one or two specific tasks to

carry out.

 Test procedures with large data sets representing all possible permutations

of reasonable or unreasonable data. Make your procedure fail before

someone else does.

www.MicrosoftTraining.net 0207 987 3777 43

Using Debugging Tools
VBA’s debugging tools are useful for checking and understanding the cause of

logic and run-time errors in the code.

The toolbar buttons as they appear left to right are explained below:

Design Mode

Turns design mode off and on.

Run / Continue

Runs code or resumes after a code break

Break

Stops the execution of a program while it's running and

switches to Break Mode.

Reset

Clears the execution stack and module level variables and

resets the project.

Toggle Breakpoint Sets or removes a Break Point at the current line.

Step Into

Executes code one statement at a time.

Step Over

Allows selected ode to be stepped over during execution.

Step Out

Executes the remaining lines of a procedure after a break

Locals Window

Displays the value of variables and properties during code

execution

Immediate Window Displays a window where individual lines of code can be

executed and variables evaluated.

Watch Window

Displays the value of each expression that is added to a

window.

Quick Watch

Displays the current value of the selected expression.

Call Stack

Displays all the currently loaded procedures

Debugging is done when the application is suspended (in Break Mode).

Everything loaded into memory remains in memory and can be evaluated. A

program enters Break mode in one of the following ways

 A code statement generates a run-time error

 A breakpoint is intentionally set on a line of code

 A Stop statement is entered within the program code.

44 0207 987 3777 www.MicrosoftTraining.net

Identifying the Value of Expressions

While debugging it is useful to find out the value of variables and expressions

while your code is executing.

VBA has the Locals Window, Immediate Window, Watch Window and Quick

Watch, described in Using Debugging Tools on the previous page, which can be

used to find the values of expressions

Another quick way of finding out the value of variables and expressions is the

Auto Data Tip which displays the value of the expression where the mouse is

pointing.

Setting Breakpoints

Setting breakpoints allows you to identify the location where you want your

program to enter into break mode. The program runs to the line of code and

stops. The code window displays and the line of code where the break point is

set is highlighted.

When the code is halted, the value of a variable or expression can be checked by

holding the mouse pointer over the expression or in the immediate window.

To set a breakpoint open the code window and select the desired procedure:

 Position the insert

point on the desired

line of code

 Set the breakpoint by

clicking Toggle

Breakpoint on the

Debug toolbar

OR

 Open the Debug

menu and select

Toggle Breakpoint

OR

 Click in the grey area

to the left of the line

of code

www.MicrosoftTraining.net 0207 987 3777 45

How to Step Through Code

The step tools allow you to step one line at a time through the code to see

exactly which statements in your procedure are being executed.

Step Into

F8 Executes code one statement at a time. If

the statement calls another procedure

execution steps into the called procedure

and continues to execute one step at a

time.

Step Over

Shift + F8 Executes code one statement at a time. If

the statement calls another procedure the

procedure is executed without pausing.

Step Out

Ctrl + Shift +

F8

Executes the remaining lines of a

procedure without pausing.

Run To Cursor Ctrl + F8 Runs from the current statement to the

location of the cursor in the Code window

if you are stepping through code.

Set next

Statement

Ctrl + F9 Runs the statement of your choice rather

than the next statement.

Call Stack

Ctrl + L Displays all the currently active procedures

in the application that have started but are

not completed.

46 0207 987 3777 www.MicrosoftTraining.net

Working With Break Mode During Run Mode

During code execution the program can enter into Break Mode either intentionally

or because of a run-time error. When a run-time error occurs a message appears

that describes the error.

Click the Debug button to display the code window with the offending line

highlighted.

If during the program execution you need to intervene, for example it’s stuck in

an endless loop, you can do so by pressing Ctrl + Break or the Break button in

the Visual Basic Editor.

That action will suspend the program execution and produce the following

message:

www.MicrosoftTraining.net 0207 987 3777 47

Unit 6 Handling Errors

Handling errors is another aspect of writing good code. VBA allows you to enter

instructions into a procedure that directs the program in case of an error.

Successfully debugging code is more of an art than a science. The best results

come from writing understandable and maintainable code and using the available

debugging tools. When it comes to successful debugging, there is no substitute

for patience, diligence, and a willingness to test relentlessly, using all the tools at

your disposal.

Writing good error handlers is a matter of anticipating problems or conditions

that are beyond your immediate control and that will prevent your code from

executing correctly at run time. Writing a good error handler should be an

integral part of the planning and design of a good procedure. It requires a

thorough understanding of how the procedure works and how the procedure fits

into the overall application. And, writing good procedures is an essential part of

building solid Microsoft Office solutions.

Good error handling should keep the program from terminating when an error

occurs.

Defining VBA's Error Trapping Options

The error trapping mechanism can be turned on, off or otherwise modified while

developing a project.

To set the Error Handling options:

 Open the Tools menu

 Select Options

48 0207 987 3777 www.MicrosoftTraining.net

The Options dialog box appears.

The Error Trapping options are explained below:

Break on

All Errors

Causes program to enter Break mode and display

an error message regardless of whether you have

written code to handle the error.

This option turns the error handling mechanism off

and should be used for debugging only

Break in

Class Module

Causes program to enter Break mode and display

an error message when an unhandled error occurs

within a procedure of a class module such as a User

Form.

If the Debug button is clicked in the error message

window, the Code window will display the line of

code that generated the error highlighted. Should

be used for debugging only.

Break on

Unhandleded Errors

Causes the program to enter Break mode and

display a message when an unhandled error occurs.

This is the setting that should be selected before

distributing your application.

For a list of trappable errors in Access search Help for Trappable Errors

Constants while in the Visual Basic Editor.

A list of the error numbers and their descriptions appears.

www.MicrosoftTraining.net 0207 987 3777 49

Capturing Errors with the On Error Statement

In a procedure, you enable an error trap with an On Error statement. If an error is

generated after this statement in encountered, the Error handler takes over and

passes control to what the On Error statement specifies.

The Error-Handling syntax is as follows:

On Error <branch instruction>

On Error GoTo ErrorHandler

On Error Resume Next

Once an On Error statement has trapped an error, the error needs to be handled.

Below are the 3 basic styles that VBA uses for handling errors:

Write an Error handler

This uses the On Error GoTo statement. It

would include statements to handle one or

more errors for the procedure.

Ignore the Error If the error is inconsequential, use the On Error

Resume Next statement to both trap and

handle the error. The program continues on the

next line of code.

Use in-line error handling Use the On Error Resume Next statement to

trap the error. Then enter code to check for

errors immediately following any statements

expected to generate errors.

On Error GoTo 0

This statement disables the error-handling for the procedure at least until another

On Error statement is encountered. This is an alternative to changing the Error

Trapping settings to Break on All Errors as it only affects the procedure it is in.

Once the issue is resolved remove the statement from the procedure.

50 0207 987 3777 www.MicrosoftTraining.net

Error trapping is defined on a procedure-by-procedure basis. VBA does not allow

you to specify a global error trap.

Determining the Err Object

When an error occurs, VBA uses the Err object to store information about that

error. The Err object can only contain information about one error at a time

The properties of the Err object contain information such as the Error Number,

Description, and Source.

The Err object's Raise method is used to generate errors, and its Clear method is

used to remove any existing error information.

Using the Raise methods to force an error can help in error testing routines.

The following statement generates a “Division By Zero” error message:

Err.Raise 11

Coding An Error-Handling Routine

The On Error Go To statement is used to branch to a block of code within the

same procedure which handles errors. This block is known as the error-handling

routine and is identified by a line label.

The routine is always stored at the bottom of the procedure, preceded by an Exit

statement that prevents the routine from being executed unless an error has

occurred.

Common line labels used to identify an Error-handling routine are “ErrorHandler”

and “EH”. You can use one of these or create a personal one to handle all your

error-handling routines.

Line labels only have to be unique within the procedure.

The benefit of using this style is that all the error-handling logic is at the bottom

rather than being mixed up with the main logic of the procedure making the

procedure easier to read and understand.

The example below illustrates a error-handling routine for a sub procedure:

www.MicrosoftTraining.net 0207 987 3777 51

Sub RunFormula()

On Error GoTo ErrorHandler

Dim A As Double

Dim B As Double

A = InputBox("Type in the value for A")

B = InputBox("Type in the value for B")

MsgBox A / B

Exit Sub

ErrorHandler:

If Err.Number = 11 Then

 B = InputBox(Err.Description & " is not allowed. Enter a non-zero number.")

 Resume

Else

 MsgBox "Unexpected Error. Type " & Err.Description

End If

End Sub

When an execution has passed into an error routine the following list shows how

to specify which code to be used next:

Resume Execution continues on the same line within the

procedure that caused the error.

Resume Next Execution continues on the line within the

procedure that follows the line that caused the

error.

Resume <Line Label> Execution continues on the line identified by the

line label. This usually points to another routine

within the procedure that performs a “clean-up”

be releasing variables and deleting temporary

files.

End Sub / End Function Used to exit the procedure normally by reaching

the End Sub or end Function command

52 0207 987 3777 www.MicrosoftTraining.net

Exit Sub / Exit Function Immediately exits the procedure in which it

appears. Execution continues with the statement

following the statement that called the

procedure.

Using Inline Error Handling

Using this method you place the code to handle errors directly into the body of

the procedure, rather than placing it at the end of the routine.

To do this, place the On Error Resume Next statement into the procedure. The

error handling code is then placed immediately after the line where the code is

expected to cause error. This method may be simpler to use in very long

procedures where two or more errors are anticipated.

Sub ProcFileOpen()

On Error Resume Next

Open "C:\My Documents\Sales2006.xls" For Input As #1

Select Case Err

 Case 53

 MsgBox "File not found: C:\My Documents\Sales2006.xls"

 Case 55

 MsgBox "File in use: C:\My Documents\Sales2006.xls"

 Case Else

 MsgBox "Err Number: " & Err.Number & vbLf & _

 "Error Descriptoion: " & Err.Description

End Select

Err.Clear

End Sub

www.MicrosoftTraining.net 0207 987 3777 53

Unit 7 Managing Program Execution

Defining Control-Of-Flow structures
When a procedure runs, the code executes from top to bottom in the order that it

appears. Only the simplest of programs execute in this manner. Most programs

incorporate logic to control which lines of code to execute.

The Control-Of-Flow structures described below provide this logic:

Sequential

Each line of code is executed in order from top to bottom.

Unconditional

Branching

A statement that directs the flow of program execution to

another location in the program without condition. Calling

a Function, a Sub or using the GoTo statement are

examples of unconditional branching

Conditional

Branching

The code to be executed is based on the outcome of a

Boolean expression. Decision structures like If and Select

Case are used to implement conditional branching.

Looping A block of code executed repeatedly as long as a certain

condition exists. The For…Next and the Do..Loop are

examples of looping structures

Halt

Statements

Commands used to stop code execution. The Stop

command stops execution but retains variables in memory.

The End command terminates the application.

Using Boolean Expressions
A Boolean expression returns a True or False value. Many Boolean expressions

take the form of two expressions either side of a comparison operator. If the

result is true the condition is met and control is passed to the code to be

executed.

Here are some examples of Boolean expressions:

Firstname = “Alan”

UnitPrice > 1.60

OrderAmount < 500

54 0207 987 3777 www.MicrosoftTraining.net

The following comparison operators are used in Boolean expressions:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

Is Compares object variables

Like Compares string expressions

When testing for more than one condition Boolean expressions can be joined

with a Logical Operator.

The following is a list of Logical Operators:

And

Each expression must be True for the condition to be true.

Or

One of the expressions must be True for the condition to be true.

Not

The expression must be False for the condition to be true.

The following are examples of multiple conditions joined by logical operator:

UnitPrice > 1.60 AND OrderAmount > 1000

DateJoined <= 2004 OR DeptName = “Sales”

A null expression will be treated as a false expression.

www.MicrosoftTraining.net 0207 987 3777 55

Using the If...End If Decision Structures

If…End If is used to execute one or more statements depending upon a text

condition. There are four forms of the If construct.

The first contains the condition and statement to be executed in the same line:

If <condition> Then <statement>

If OrderAmount >1000 Then Discount = “Yes”

The block form is used when several statements are to be executed based on

result of the test condition:

If <condition> Then

<statement block>

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

End If

Like the If…Then structure the If…Then…Else structure passes control to the

statement block that follows the Then keyword when the condition is True and

passes control to the statement block that follows the Else keyword when the

condition is False.

If <condition> Then

<statement block>

Else

<statement block>

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

Else

Account = “Foreign”

TransportCost = 40.00

End If

56 0207 987 3777 www.MicrosoftTraining.net

By modifying the basic structure and inserting ElseIf statements, an

If…Then…Else block that tests multiple conditions is created. The conditions are

tested in the order of appearance until a condition is true.

If a true condition is found, the statement block following the condition is

performed; execution then continues with the first line of code following the End

If statement. If no condition is true, execution will continue with the End If

statement. An optional Else clause at the end of the block will catch the cases

that do not meet any of the conditions.

If <condition_1> Then

<statementBlock1>

[ElseIf <condition_2> Then

[<StatementBlock2>]]

[ElseIf <condition_3> Then

[<StatementBlock3>]]

[ElseIf <condition_N> Then

[<StatementBlockN>]]

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

ElseIf Country = “Wales” Then

Account = “Domestic”

TransportCost = 20.00

ElseIf Country = “Scotland” Then

Account = “Domestic”

TransportCost = 25.00

ElseIf Country = “Northern Ireland” Then

Account = “Domestic”

TransportCost = 30.00

Else

Account = “Foreign”

TransportCost = 40.00

End If

www.MicrosoftTraining.net 0207 987 3777 57

Using the Select Case...End Select Structure
The Select Case statement is often used in place of the complex If statement.

The advantage of using this style is that your code will be more readable and

efficient. The downside is that it is only useful if compared against just one value.

The Select Case structure contains the test expression in the first line of the

block. Each Case statement in the structure then compares against the test

expression. The syntax of the Select Case structure, followed by two examples is

shown below:

Select Case <TestExpression>

Case <Expression_1>

<StatementBlock1>

Case <Expression_2>

<StatementBlock2>

Case <Expression_3>

<StatementBlock3>

Case <Expression_N>

<StatementBlockN>

End Select

Select Case Country

Case “England”

Account = “Domestic”

TransportCost = 10.00

Case “Wales”

Account = “Domestic”

TransportCost = 20.00

Case “Scotland”

Account = “Domestic”

TransportCost = 25.00

Case “Northern Ireland”

Account = “Domestic”

TransportCost = 30.00

Case Else

Account = “Foreign”

TransportCost = 40.00

End Select

Select Case TestScore

Case 0 To 50

Result = “Below Average”

Case 51 To 70

Result = “Good”

Case Is > 70

Result = “Excellent”

Case Else

Result = “Irregular Test Score”

End Select

58 0207 987 3777 www.MicrosoftTraining.net

Using the Do...Loop Structure
The Do…Loop structure controls the repetitive execution of the code based upon

a test of a condition. There are two variations of the structure: Do While and Do

Until.

The Do While structure executes the code as long as the condition is true.

The Do Until structure executes the code up to the point where the condition

becomes true or as long as the condition is false. The condition is any expression

that can be evaluated to true or false.

The Exit Do is optional and can be used to quit the Do statement and resume

execution with the statement following the Loop. Multiple Exit Do statements

can be placed anywhere within the Loop construct.

The following syntax is used to perform the statement block zero or more times:

Do While <condition>

<statement block>

[Exit Do]

Loop

Do Until <condition>

<statement block>

[Exit Do]

Loop

Do While ActiveCell.Value <> “”

ActiveCell.Value = ActiveCell.Value *1.25

ActiveCell.Offset(1).Select

Loop

To perform the statement block at least once, use one of the following:

Do

<statement block>

[Exit Do]

Loop While <condition>

Do

<statement block>

[Exit Do]

Loop Until <condition>

Do

Count = Count +1

Loop Until Count = NoStudents

www.MicrosoftTraining.net 0207 987 3777 59

Using the For...Next Structure
The For…Next structure executes a block of statements a specific number of

times using a counter that increases or decreases values. Beginning with the start

value, the counter is increased or decreased by the increment. The default

increment is 1. Specify an increment of -1 to count backwards.

The Exit For statement is optional and can be used to quit the For construct and

resume execution with the statement following the Next.

Below is the syntax of the For…Next statement:

For <counter> = <start> To <end> [Step <increment>

<statement block>

[Exit For]

Next [<counter>]

Dim MyIndex as Integer

For MyIndex = 1 To NoRows

Cells (MyIndex,4).Select

Total = Total + Cells (NoRows,4).Value

Next MyIndex

Using the For Each...Next Structure
The For Each…Next structure is used primarily to loop through a collection of

objects. With each loop it stores a reference to a given object within the

collection to a variable. The variable can be used by the code to access the

object’s properties. By default it will loop through ALL the objects in a collection.

The Exit For statement is optional and can be used to quit the For Each construct

and resume execution with the statement following the Next.

Below is the syntax of the For Each…Next statement:

For Each <element> in <CollectionReference>

<statement block>

[Exit For]

Next [<element>]

Dim rst As dao.recordset

For Each rst In Application.recordsets

rst.delete

Next rst

60 0207 987 3777 www.MicrosoftTraining.net

Guidelines for Use of Control-Of-Flow Structures
Use the following as a guide in choosing the appropriate Decision structure:

Use To

If…Then Or If…Then…End If

Execute one statement based on the

result of one condition

If…Then…End If Execute a block of statements based on

the result of one condition

If…Then…Else…End If Execute 1 of 2 statement blocks based on

the result of one condition

Select Case…End Select Execute 1 of 2 or more statement blocks

based on 2 or more conditions, with all

conditions evaluated against 1 expression.

If…Then…ElseIf…End If Evaluate 1 of 2 or more statement blocks

based on 2 or more conditions, with

conditions evaluated against 2 or more

expressions.

Use the following as a guide in choosing the appropriate Looping structure:

Use To

For…Next
Repeat a statement block a specific

number of times. The number is known or

calculated at the beginning of the loop

and doesn’t change.

For…Each

Repeat a statement block for each

element in a collection or array.

For…Next Repeat a statement block while working

through a list when the number of list

items is known or is calculated

beforehand.

Do…Loop Repeat a statement block while working

through a list when the number of list

items is not known or are likely to change.

Do…Loop Repeat a statement block while a

condition is met.

www.MicrosoftTraining.net 0207 987 3777 61

Unit 8 Harnessing Forms and Controls

Defining Forms

Dialog boxes are used in applications to interface with the user. VBA allows you

to create custom dialog boxes that can display information or retrieve

information from the user as required. These are known as Forms or just Forms.

A Form serves as a container for control objects, such as labels, command

buttons, combo boxes, etc. These controls depend on the kind of functionality

you want in the form. When a new Form is added to the project, the Form

window appears with a blank form, together with a toolbox containing the

available controls. Controls are added by dragging icons from the toolbox to the

Form. The new control appears on the form with 8 handles that can be used to

resize the control. The grid dots on the form help align the controls on the form.

Utilising the Toolbox

While working on a form the toolbox is displayed but becomes hidden when

another window in the Visual Basic Editor is selected. Controls are added to

forms to build a desired interface and add functionality.

The default set of controls, from left to right, on the above toolbox are described

below:

Select Objects Makes the mouse behave as a pointer for selecting a

control on a form.

Label Creates a box for static text

Text Box Creates a box for text input or display.

Combo Box Creates the combination of a drop-down list and textbox.

The user can select an option or type the choice.

List Box Creates a scrollable list of choices

Check Box Creates a logical check box

62 0207 987 3777 www.MicrosoftTraining.net

Option Button Creates an option button that allows exclusive choice from

a set of options.

Toggle Button Creates a toggle button that when selected indicates a Yes,

True or On status.

Frame Creates a visual or functional border.

Command Button Creates a standard command button.

Tab Strip Creates a collection of tabs that can be used to display

different sets of similar information.

MultiPage Creates a collection of pages. Unlike the Tab Strip each

page can have a unique layout.

Scroll Bar Creates a tool that returns a value of for a different control

according to the position of the scroll box on the scroll bar

Spin Button Creates a tool that increments numbers.

Image Creates an area to display a graphic image.

RefEdit Displays the address of a range of cells selected on one or

more worksheets.

Double-click a toolbox icon and it remains selected allowing multiple controls to

be drawn.

www.MicrosoftTraining.net 0207 987 3777 63

Using Form Properties, Events and Methods

Every Form has its own set of properties, events and methods. Properties can be

set in both the Properties window and through code in the Code window.

Properties

All forms share the same basic set of properties. Initially every form is the same.

As you change the form visually, in the Form window, you are also changing its

properties. For example if you resize a form window, you change the Height and

Width properties.

The following list describes the more commonly used properties of a Form:

Property Description

BackColor Sets the background colour of a form.

BorderStyle Sets the border style for the form.

Caption Sets the form’s title in the title bar.

Enabled Determines whether the form can respond to user-

generated events.

Height Sets the height of the form.

HelpCOntextID Associates a context-sensitive Help topic with a form.

MousePointer Sets the shape of the mouse pointer when the mouse

is positioned over the form.

Picture Specifies picture to display in the form.

StartUpPosition Sets where on the screen the form will be displayed.

Width Sets the width of the form.

64 0207 987 3777 www.MicrosoftTraining.net

Events

All Forms share a set of events they recognize and to which they respond by

executing a procedure. You create the code to execute for a form event the same

way as you create other event procedures:

 Display the code window for the form

 Select the Form object

 Select the event from the Procedure list.

Methods

Forms also share methods that can be used to execute built-in procedures.

Methods are normally used to perform an action in the form.

The three most useful methods are explained below:

Show

Displays the form; can be used to load a form if not

already loaded.

Hide Hides the form without unloading it from memory.

Use the keyword Me in the Form’s code module instead of its name to refer to

the active form and access its properties and methods.

Object Procedur

www.MicrosoftTraining.net 0207 987 3777 65

Understanding Controls
A control is an object placed on a form to enable user interaction. Some controls

accept user input while others display output. Like all other objects controls can

be defined by their properties, methods and events.

Below is an example of a form containing commonly used controls:

Control properties can be viewed and assigned manually via the Properties window.

While each type of control is unique many share similar attributes.

The following list contains properties that are common among several controls:

Property Description

ControlTipText

Specifies a string to be displayed when the mouse

pointer is paused over the control

Enabled Determines if the user can access the control.

Font Sets the control text type and size.

Height Sets the height of the control

MousePointer Sets the shape of the mouse pointer when the mouse is

positioned over the object

TabIndex Determines the order in which the user tabs through the

controls on a form.

TabStop Determines whether a control can be accessed using the

tab key.

Visible Determines if a control is visible

Width Sets the width of a control.

66 0207 987 3777 www.MicrosoftTraining.net

All controls have a default property that can be referred by simply referencing the

name of the control. In one example the Caption property is the default property

of the Label control.

This makes the two statements below equivalent:

Label1 = “Salary”

Label1.Caption = “Salary”

As with forms many controls respond to system events.

The following are the more common events that controls can detect and react to:

Click

Occurs when the user clicks the mouse button while the

pointer is on the control

GotFocus Occurs when a control receives focus

LostFocus Occurs when a control loses focus

MouseMove Occurs when a user moves the mouse pointer over a

control.

Naming Conventions

It’s a good practice to use a prefix that identifies the control type when you assign

a name to the control.

Below is a list of several control object name prefix conventions:

Object Prefix

Check box chk

Combo box cbo

Command button cmd

Frame fra

Image img

Label lbl

List box lst

Option button opt

Text box txt

www.MicrosoftTraining.net 0207 987 3777 67

Setting Control Properties in the Properties Window

Each control has a set of properties that can be set in the design environment

using the Properties window. Categories for the property window vary per object.

Frequently used categories are behaviour, font, and position.

To set Control Properties in the Properties Window:

 Display the Properties Window

 Click the Alphabetic tab to display

properties in alphabetic order

OR

 Click the Categorized tab to display

properties by category

To change a property setting:

 Select the desired control in the

Form window or from the drop

down list in the Properties window

 Scroll to the desired property and

use the appropriate method to

change the setting in the value

column.

68 0207 987 3777 www.MicrosoftTraining.net

Using the Label Control

The Label control is used to display text on a form that cannot be modified by

the user.

It can be modified in the procedure by using the Caption property.

Below are some unique properties of the Label control:

Property Description

TextAlign

Determines the alignment of the text inside the label.

AutoSize Determines if the dimensions of the label will automatically

resize to fit the caption.

Caption Sets the displayed text of the field.

WordWrap Determines if a label expands horizontally or vertically as

text is added. Used in conjunction with the AutoSize

property.

Using the Text Box Control

The Text Box control allows the user to add or edit text. Both string and numeric

values can be stored in the Text property of the control.

Below are some important properties of the Text Box control:

Property Description

MaxLength

Specifies the maximum number of characters that can be

typed into a text box. The default is 0 which indicates no

limit.

MultiLine Indicates if a box can contain more than one line.

ScrollBars Determines if a multi-line text box has horizontal and/or

vertical scroll bars.

Text Contains the string displayed in the text box.

www.MicrosoftTraining.net 0207 987 3777 69

Using the Command Button Control

Command buttons are used to get feedback from the user. Command buttons

are among the most important controls for initiating event procedures.

The most used event associated with the Command Button is the Click event.

Below are two unique properties of the Command button control:

Property Description

Cancel

Allows the Esc key to “click” a command button. This

property can only be set for one command button per

form.

Default Allows the Enter key to “click” a command button. This

property can only be set for one command button per

form.

Using the Combo Box Control

The Combo Box control allows you to display a list of items in a drop-down list

box. The user can select a choice from the list or type an entry.

The items displayed on the list can be added in code using the AddItem method.

Below are some important properties of the Combo Box control:

Property Description

ListRows

Sets the number of rows that will display in the list.

MatchRequired Determines whether the user can enter a value that is

not on the list.

Text Returns or sets the text of the selected row on the list.

Some important methods that belong to the Combo Box are explained below:

AddItem item_name, index

Adds the specific item to the bottom of the

list.

70 0207 987 3777 www.MicrosoftTraining.net

If the index number is specified after the item

name its added to that position on the table

RemoveItem index Removes the item referred to by the index

number.

Clear Clears the entire list.

Using the Frame Control

The Frame control is used to group a set of controls either functionally or

logically within an area of a Form. Buttons placed within a frame are usually

related logically so setting the value of one affects the values of others in the

group.

Option buttons is a frame are mutually exclusive, which means when one is

set to true the others will be set to false.

Using Option Button Controls

An Option Button control displays a button that can be set to on or off. Option

buttons are typically presented within a group in which one button may be

selected at a time.

The Value property of the button indicates the on and off state.

Using Control Appearance

The Form toolbar provides several tools that are used to manipulate the

appearance of the controls on the form.

Many of the tools on the Form toolbar require the user to select multiple controls.

To do this:

 Click the first control

 Hold down the Shift key

 Click any additional controls

Controls will be aligned or sized according to the first control selected. The first

control selected is identified by its white selection handles.

Below is an illustration of a Form with multiple controls selected:

www.MicrosoftTraining.net 0207 987 3777 71

Below is an illustration of the Form toolbar together with the options for Align,

Centre and Make Same Size.

Setting the Tab Order

The tab order is the order by which pressing the Tab key moves focus from

control to control on the form. While the form is being built the tab order is

determined by the order in which you place the controls on the form. If the

controls are rearranged you may nee to manually reset the tab order. To set the

tab order:

Bring to front

Make Same

Centr Zoom

Align

Send to

Group

Ungrou

72 0207 987 3777 www.MicrosoftTraining.net

 View the desired form in the

Form window

 Open the View menu

 Choose Tab Order

 Select the desired control from

the list

 Click and drag it into the required

position

Filling a Control

A list box or combo box control placed on the form is not functional until the

data that will appear on the list is added.

This is done by writing code in the sub procedure associated with the Initialize

event. This triggers when the form is loaded. The AddItem method is used to

specify the text that appears in the list.

The code below shows items added to a combo box named cboCourses:

With cboCourses

.AddItem “Excel”

.AddItem “Word”

.AddItem “PowerPoint”

End With

Adding Code to Controls

As seen, forms and their controls are capable of responding to various events.

Adding code to forms and control events are accomplished the same way as

adding code to events of other objects.

How to Launch a Form in Code

www.MicrosoftTraining.net 0207 987 3777 73

The Show method of the form object is used to launch a form within a procedure.

Creating a procedure to launch a form enables you to launch a form from a

toolbar, or menu as well as from an event such as opening a workbook.

Below is the syntax used to launch a form:

FormName.Show

frmNewData.Show

74 0207 987 3777 www.MicrosoftTraining.net

Unit 9 Introduction to Data Access Objects

VBA is the programming language you use to interact with the Access Object

Model. To interact with the data in a database, you will need to use a data access

object model.

Access employs two such object models; Data Access Objects and ActiveX Data

Objects.

DAO allows you to work with and manipulate the records in table and queries

within an access database

Critical objects
Object Use

Database It is necessary to define the database that you are working

with.

You first define the database as a object

Dim dbs as database

And then assign the current database to it

Set dbs = CurrentDB

It is also possible to assign the variable to an external

database

Recordsets Recordsets are again first defined using a Dim statement

Dim rst as DAO.Recordset

You can then assign that recordset to a table or query

Set rst = dbs.Openrecordset(“Employees”)

www.MicrosoftTraining.net 0207 987 3777 75

QueryDef When you create a query in Access you are building a

querydef

A QueryDef is first defined

Dim qdf as DAO.QueryDef

It can then be assigned to an existing query, or to an SQL

string

Set Qdf = dbs.CreateQueryDef(“Query Name”)

We are primarily concerned with manipulating existing data. For this we are

primarily concerned with using the Recordset object

Principle Methods of the RecordSet Object

Tasks Description

Opening Dbs.OpenRecordset(“Table1”,

dbOpenTable)

This opens a table as a recordset

Moving through a recordset MoveFirst Moves to first

record

MoveLast Moves to last

record

MoveNext Move to next

record

MovePrevious Move to previous

record

Editing a recordset Edit Prepares a record

for editing

Update Commits the

changes made to

a record

Adding to a recordset Append Adds new data as

a new record

76 0207 987 3777 www.MicrosoftTraining.net

Unit 10 Introduction to ADO (ActiveX Data Object)

Critical objects
Object Use

Database

Connection

It is necessary to define the connection that you are

working with also if it is the current database

You first define the Connection as a object

Dim CN as ADODB.Connection

And then assign the current database to it

Set cn = CurrentProject.Connection

It is also possible to assign the variable to an external

database

Set cn = New ADODB.Connection

Recordsets Recordsets are again first defined using a Dim statement

Dim rs as ADODB.Recordset

You can then assign that recordset as a new recordset

Set rs = New ADODB.recordset

You can define the recordset by using a SQL string, a

name of a table or a query from the current database

strSql = "select * from tblImport" (SQL string all records

from the table tblImport)

and now you can open the recordset based on the SQL

string

www.MicrosoftTraining.net 0207 987 3777 77

rs.Open strSql, cn, adOpenDynamic, adLockOptimistic

If you want to open a table as the recordset

rs.Open “tblImport”, cn, adOpenDynamic,

adLockOptimistic

If you want to open a recordset based on a query

rs.Open “qryQuery”, cn, adOpenDynamic,

adLockOptimistic

78 0207 987 3777 www.MicrosoftTraining.net

We are primarily concerned with manipulating existing data. For this we are

primarily concerned with using the Recordset object

Principle Methods of the RecordSet Object

Tasks Description

Moving through a recordset MoveFirst Moves to first

record

MoveLast Moves to last

record

MoveNext Move to next

record

MovePrevious Move to previous

record

Editing a recordset Edit Prepares a record

for editing

Update Commits the

changes made to

a record

Adding to a recordset Append Adds new data as

a new record

www.MicrosoftTraining.net 0207 987 3777 79

Some Examples how ADO code can look like:
The first example adds 20% to the column “Ord tot”

Public Sub CalcVat()

Dim cn As ADODB.Connection

Dim rs As ADODB.recordset

Dim strSql As String

Set cn = CurrentProject.Connection

Set rs = New ADODB.recordset

strSql = "select * from tblImport"

rs.Open strSql, cn, adOpenDynamic, adLockOptimistic

rs.MoveFirst

Do Until rs.EOF

rs![VAT] = rs![ord tot] * 0.2

rs.MoveNext

80 0207 987 3777 www.MicrosoftTraining.net

Loop

rs.Close

Set rs = Nothing

End Sub

The second example change the prices in a price list

Sub ChangeProductPrices()

Dim rs As ADODB.recordset

Dim sSQL As String

Dim sValue As String

Dim cn As ADODB.Connection

Set cn = CurrentProject.Connection

sSQL = "SELECT * FROM Items"

Set rs = New ADODB.recordset

rs.Open sSQL, cn, adOpenDynamic, adLockOptimistic

DoCmd.SetWarnings False

rs.MoveFirst

www.MicrosoftTraining.net 0207 987 3777 81

Do Until rs.EOF

If rs.Fields("product description") Like "shoe*" Then

rs.Fields("unit price") = rs.Fields("unit price") * 1.07

ElseIf rs.Fields("product description") Like "boots*" Then

rs.Fields("unit price") = rs.Fields("unit price") * 1.1

ElseIf rs.Fields("product description") Like "ball*" Then

rs.Fields("unit price") = rs.Fields("unit price") * 1.09

ElseIf rs.Fields("product description") Like "*fishing" Then

rs.Fields("unit price") = rs.Fields("unit price") * 1.09

End If

rs.MoveNext

Loop

DoCmd.SetWarnings True

rs.Close

End Sub

E&OE

STL Training reserves the right to revise this publication and make changes from

time to time in its content without notice.

82 0207 987 3777 www.MicrosoftTraining.net

Quick reference: Access shortcuts

Keystroke Command

Ctrl + Add new record

Ctrl-F2 Builder

spacebar Check/uncheck box or option button

Ctrl-W Close

Ctrl-C Copy

Ctrl-X Cut

Ctrl-Y Cut current line and copy to Clipboard

F6/Shift-F6 Cycle through sections

Ctrl-Tab/Shift-Ctrl-Tab Cycle through tab of each object's type (toggle)

F11 Database window

Ctrl - Delete current record

F2 Edit/Navigation mode (toggle)

Ctrl-Tab/Shift-Tab Exit subform and move to next/previous field in next

record

Shift-Down/Up Extend selection to next/previous record

F12 File/Save As

Ctrl-F Find

Shift-F4 Find Next

Shift-F3 Find Previous

Ctrl-G GoTo

Ctrl ; Insert current date

Ctrl : Insert current time

Ctrl-Alt-spacebar Insert default value

Ctrl-Enter Insert new line

Ctrl ' Insert value from same field in previous record

F10 Menu bar

Ctrl-Home/End Move to beginning/end of multiple-line field

Ctrl-Up/Down Move to current field in first/last record (Navigation

mode)

Ctrl-Home Move to first field in first record (Navigation mode)

Home/End Move to first/last field in current record (Navigation

mode)

Ctrl-End Move to last field in last record (Navigation mode)

Home or Ctrl-Left Move to left edge of page

F5 Move to page number/record number box

End or Ctrl-Right Move to right edge of page

Ctrl-F6 Next window

F4 Open combo box

Ctrl-Enter Open in Design view

